cpu scheduler
- Solution
- pre process
- sort based on arrival time
- update based on queue
!queue.isEmpty || i < len
- Calculate Turn Around and Waiting
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
class Process
{
char pid;
int brust;
int reminder;
int arrival;
int start;
int end;
int turnAround;
int waiting;
public:
Process(char p, int b, int a, int s, int e, int t, int w)
:pid(p), brust(b),reminder(b), arrival(a), start(s), end(e), turnAround(t), waiting(w){};
void print(Process * process)
{
cout << process->pid << endl;
}
static void printSummary(const vector<Process *> myVector)
{
cout << "PID\t\t" << "TT\t\t\t" << "WT" << endl;
int TTsum = 0, WTsum = 0;
for (auto& it : myVector) {
TTsum += it->turnAround;
WTsum += it->waiting;
cout << it->pid << "\t\t" << it->turnAround << "\t\t\t" << it->waiting << endl;
}
cout << "Ave\t\t" << TTsum << "/" << myVector.size() << "=" << 1.0 * TTsum/myVector.size() << "\t"
<< WTsum << "/" << myVector.size() << "=" << 1.0 * WTsum/myVector.size() << endl;
}
static bool compare_arrival(const Process * a, const Process * b)
{
return a->arrival - b->arrival < 0;
}
static bool compare_brust(const Process * a, const Process * b) {
return a->brust - b->brust < 0;
}
struct Comparator
{
bool operator()(const Process* lhs, const Process* rhs)
{
return lhs->brust > rhs->brust;
}
};
static void SRTFScheduler(const vector<Process *> myVector, int quantum)
{
priority_queue<Process *,vector<Process *>, Comparator> pq;
int T = -1;
int index = 0;
int len = myVector.size();
while (pq.size() != 0 || index < len)
{
if (pq.size() != 0)
{
Process *top = pq.top();
if (top->start == -1)
{
top->start = T;
}
-- top->reminder;
pq.pop();
if (top->reminder == 0)
{
top->end = T;
top->turnAround = top->end - top->arrival;
top->waiting = top->start - top->arrival;
// pq.pop();
}
else {
pq.push(top);
}
}
++ T;
// fill arrival processes to queue
for (;index < len && (myVector[index]->arrival) <= T; ++ index)
{
pq.push(myVector[index]);
}
}
}
static void SJFScheduler(const vector<Process *> myVector, int quantum)
{
priority_queue<Process *,vector<Process *>, Comparator> pq;
int T = -1;
int index = 0;
int len = myVector.size();
while (pq.size() != 0 || index < len)
{
if (pq.size() != 0)
{
Process *top = pq.top();
top->start = T;
T += top->brust;
top->end = T;
top->turnAround = top->end - top->arrival;
top->waiting = top->start - top->arrival;
pq.pop();
}
else
{
++ T;
}
// fill arrival processes to queue
for (;index < len && (myVector[index]->arrival) <= T; ++ index)
{
pq.push(myVector[index]);
}
}
}
static void RRScheduler(const vector<Process *> myVector, int quantum)
{
queue<Process *> q;
int T = -1;
int index = 0;
int len = myVector.size();
while (q.size() != 0 || index < len)
{
Process *front = nullptr;
if (q.size() != 0)
{
front = q.front();
if (front->start == -1)
{
front->start = T;
}
for (int i = 0; i < quantum && front->reminder > 0; ++ i)
{
-- front->reminder;
++ T;
}
if (front->reminder == 0)
{
front->end = T;
front->turnAround = front->end - front->arrival;
front->waiting = front->start - front->arrival;
}
q.pop();
}
else
{
++ T;
}
// fill arrival processes to queue
for (;index < len && (myVector[index]->arrival) <= T; ++ index)
{
q.push(myVector[index]);
}
if (front != nullptr && front->reminder > 0)
{
q.push(front);
}
}
}
};
int main() {
cout<<"Hello World\n";
const int SIZE = 5;
char pid[SIZE] = {'A', 'B', 'C', 'D', 'E'};
int brust[SIZE] = {10, 1, 2, 1, 5};
int arrival[SIZE] = {0, 1, 3, 0, 1};
vector<Process *> myVector;
for(int i = 0; i < 5; ++ i) {
Process *rr = new Process(pid[i], brust[i], arrival[i], -1, -1, -1, -1);
myVector.push_back(rr);
}
sort(myVector.begin(), myVector.end(), Process::compare_arrival);
// Process::RRScheduler(myVector, 3);
// Process::printSummary(myVector);
// Process::SJFScheduler(myVector, 3);
// Process::printSummary(myVector);
Process::SRTFScheduler(myVector, 3);
Process::printSummary(myVector);
return 0;
}