多倍体化 (全基因组加倍) 在自然界中广泛分布,是许多植物和部分动物进化和多样性形成的重要驱动力。异源多倍体不但加倍基因组,同时也固定了种间的杂交优势,通常表现出更强的生长势,更好的环境适应能力。但异源多倍体必须克服种间杂交引起的“基因组冲击”(Genomic Shock);有些多倍体植物如油菜表现出亚基因组之间的交换,而另一些多倍体植物如棉花和拟南芥的亚基因组却比较稳定,并在进化中逐渐建立起自身适应性和选择优势,**但这种多倍体植物的不同进化机制仍不清楚。
拟南芥属一直是植物研究的重要实验材料,其中天然的异源四倍体拟南芥A. suecica (TTAA)是由拟南芥属的不同种A. thaliana(TT)和A. arenosa(AAAA)杂交而成,是研究多倍体的优良模式植物(图1a)。遗憾的是,A. suecica及其A基因组供体祖先A. arenosa至今并没有高质量的参考基因组,限制了更深入的研究。
近日,南京农业大学多倍体研究团队在Nature Ecology & Evolution上发表了题为Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids的研究论文,绘制了天然的异源四倍体拟南芥A. suecica和人工合成的异源四倍体拟南芥Allo738的高质量基因组,并解析了异源多倍体植物进化过程中的遗传和表观遗传调控机制。
由于A. arenosa是异交植物且基因组高度杂合,其基因组研究一直停滞不前。人工合成异源四倍体拟南芥Allo738和Allo733(TTAA)是由四倍体A. arenosa和四倍体A. thaliana杂交并经多代自交而成的两个独立的稳定纯合株系(图1a),该研究基于PacBio,Illumina和Hi-C等主流测序技术,组装并注释了A. suecica和Allo738的基因组。因为Allo738的A亚基因组来源于A. arenosa的基因组,从而创造性地得到了完整的A. arenosa的基因组序列。与祖先相比,异源四倍体A. suecica基因组存在一些明显的序列重排和基因家族数目的扩增及收缩,但整体还是呈现出保守的基因数目和共线性(图1b)。
研究发现稳定的基因组伴随着表观基因组之间的变异。通过绘制A. thaliana(Ler, 4x),A. arenosa,F1杂交种,Allo738,Allo733以及A. suecica的全基因组DNA甲基化图谱,该研究发现亲本A. arenosa(AAAA)的整体甲基化水平显著高于A. thaliana(TTTT);有趣的是,异源四倍体A. suecica的A亚基因组的甲基化水平相比亲本A. arenosa明显降低,并趋同到与T亚基因组相似的甲基化水平(图2a-d)。研究进一步将A. suecica 的A亚基因组中降低的差异甲基化区域(DMR)分为三类:趋同DMR(A亚基因组甲基化水平降低到与T亚基因组相似的DMR),保守DMR(种间杂交直接引起的DMR并保留下来),以及其他剩余的DMR(图2e)。研究发现,在趋同DMR中,其相关基因的表达模式在A. suecica的亚基因组间同样呈现趋同现象,从而减弱了这些同源基因的偏向表达。这些DMR显著富集于繁殖等重要发育途径相关的基因中。这些研究表明种间杂交和多倍化在长期进化过程中会降低亚基因组DNA甲基化的差异,导致同源基因的DNA甲基化水平趋向一致。与亲本相比,异源四倍体A. suecica表现出不同的生理特征,如开花时间延迟、自交不亲和以及稳定的繁殖力等。研究发现开花调控基因、花粉-柱头识别以及育性相关基因均存在不同程度的表观遗传调控,从而呈现表达上的变异。