神经网络架构搜索——可微分搜索(Noisy DARTS)

小米实验室 AutoML 团队的NAS工作,针对现有DARTS框架在搜索阶段训练过程中存在 skip-connection 富集现象,导致最终模型出现大幅度的性能损失的问题,提出了通过向 skip-connection 注入噪声的方法,来抵消由于不公平竞争而导致的富集和性能损失问题,并且在 CIFAR-10 和 ImageNet 上分别取得了 97.61%和77.9% 的 SOTA 结果。

动机

目前 NAS 方法已经存在非常多,其中谷歌提出的 DARTS 方法,即可微分结构搜(Differentiable Architecture Search),引起了广大研究从业人员的关注与研究。但是DARTS 的可复现性不高,主要原因包括:

  • 搜索过程中存在 skip-connection 富集现象,导致最终模型出现大幅度的性能损失问题。
  • softmax离散化存在很大gap,结构参数最佳的操作和其他算子之间的区分度并不明显,这样选择的操作很难达到最优。

FairDARTS: Sigmoid函数替换Softmax函数

Softmax操作使不同操作之间的关系变为竞争关系由于 skip connection 和其他算子的加和操作形成残差结构,这就导致了 skip connection 比其他算子有很大的优势,这种优势在竞争环境下表现为不公平优势并持续放大,而其他有潜力的操作受到排挤,因此任意两个节点之间通常最终会以 skip connection 占据主导,导致最终搜索出的网络性能严重不足。

FairDARTS 通过 sigmoid 使每种操作有自己的权重,这样鼓励不同的操作之间相互合作,最终选择算子的时候选择大于某个阈值的一个或多个算子,在这种情形下,所有算子的结构权重都能够如实体现其对超网性能的贡献,而且残差结构也得以保留,因此最终生成的网络不会出现性能崩塌,从而避免了原生 DARTS 的 skip-connection 富集而导致的性能损失问题。

a = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
b = sigmod(a)
c = softmax(a)
b = array([0.52497919, 0.549834  , 0.57444252, 0.59868766, 0.62245933, 0.64565631, 0.66818777, 0.68997448, 0.7109495 ])
c = array([0.07205446, 0.0796325 , 0.08800752, 0.09726335, 0.10749263, 0.11879773, 0.13129179, 0.14509987, 0.16036016])

NoisyDARTS:skip-connection注入噪声

NoisyDARTS 是在 FairDARTS 基础上的推论,既然 skip connection 存在不公平优势,那么采用通过向 skip-connection 注入噪声的方法,来抵消由于不公平竞争而导致的富集和性能损失问题,并且在 CIFAR-10 和 ImageNet 上分别取得了 97.61% 和77.9% 的 SOTA 结果。

方法实现

如何加噪声?

NoisyDARTS 选择仅在前向传递的 skip-connection 的输入中加入噪声

\mathcal{L}=g(y), \quad y=f\left(\alpha^{s k i p}\right) \cdot(x+\tilde{x})

其中g(y)是损失函数,f\left(\alpha^{s k i p}\right)是 DATRS 中的 softmax 函数,\tilde{x}是加注的噪声。在向前传递加入噪声的时候,后向对\alpha^{s k i p}梯度更新的时候,就要将噪声一起计算在内:

\frac{\partial \mathcal{L}}{\partial \alpha^{s k i p}}=\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial \alpha^{s k i p}}=\frac{\partial \mathcal{L}}{\partial y} \frac{\partial f\left(\alpha^{s k i p}\right)}{\partial \alpha^{s k i p}}(x+\tilde{x})

加入怎样的噪声?

加入噪声会为梯度更新带来不确定性,因此选择噪声的原则首先要保持梯度的更新是有效的。NoisyDARTS 提出,应该加注一种无偏的并且方差较小的噪声,比如本文实验中使用均值为0,方差很小的高斯分布作为噪声。因为噪声相对输入很小,所以可以做如下估计:

y^{\star} \approx f(\alpha) \cdot x \quad \text { when } \quad \tilde{x} \ll x

这样做的近似好处在于,我们可以近似认为梯度的期望也是无偏的:

\mathbb{E}\left[\nabla_{s k i p}\right]=\mathbb{E}\left[\frac{\partial \mathcal{L}}{\partial y} \frac{\partial f\left(\alpha^{s k i p}\right)}{\partial \alpha^{s k i p}}(x+\tilde{x})\right] \approx \frac{\partial \mathcal{L}}{\partial y^{\star}} \frac{\partial f\left(\alpha^{s k i p}\right)}{\partial \alpha^{s k i p}}(x+\mathbb{E}[\tilde{x}])
其中噪声是均值为0的高斯分布,所以E[\tilde{x}]=0

class Identity(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x + (0.1**0.5)*torch.randn_like(x) # add (0,0.1) Gaussian Noisy

实验结果

架构参数可视化

架构参数可视化

上图展示的是在 supernet 训练过程中,不同的操作在 softmax 下的权重变化,其中深绿色的线是 skip-connection 被 softmax 分配的权重。这张图中可以看到,normal cell中 的 skip-connection 数量被极大的消减了,同时保留了 reduction-cell 中的 skip-connection。

CIFAR-10实验结果

下图展示的是在 CIFAR-10 上,NoisyDARTS 与其他主流 NAS 方法相比的结果,其中 NoisyDARTS-A-t 是在 ImageNet上 训练得到的模型,迁移到 CIFAR-10 上训练得到的结果:

CIFAR-10实验结果
CIFAR-10 DARTS搜索结果

ImageNet实验结果

ImageNet实验结果
搜索结果

消融实验

有噪声 vs. 无噪声
有噪声 vs. 无噪声
无偏噪声 vs. 有偏噪声
无偏噪声 vs. 有偏噪声
高斯噪声 vs. 均匀噪声
高斯噪声 vs. 均匀噪声
加性噪声 vs. 乘法噪声
加性噪声 vs. 乘法噪声
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341