Flume实时接入

今天花了半天时间抽空看了一下flume实时接入,结合数据仓库中有部分报表有着准实时刷新的需求,需要抽数阶段近乎实时,为后面统计计算节省时间。虽然flume接入关系型数据库数据并不太合适,比如源系统删除、更新数据,flume无法处理,但是对于日志接入这种只有插入的场景还是比较合适的。

下面介绍下flume:

一、Flume的概念

Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力


image.png

二、Flume的处理流程

Flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,Flume再删除自己缓存的数据。

在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?Event将传输的数据进行封装,是Flume传输数据的基本单位,如果是文本文件,通常是一行记录。Event也是事务的基本单位。Event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。Event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。

三、Flume的架构介绍

Flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent。Agent本身是一个Java进程,运行在日志收集节点——所谓日志收集节点就是服务器节点。 Agent里面包含3个核心的组件:source、channel和sink,类似生产者、仓库、消费者的架构。

  • Source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。
  • Channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。
  • Sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、Hbase、solr、自定义。

四、Flume的运行机制

Flume的核心就是一个agent,这个agent对外有两个进行交互的地方,一个是接受数据输入的source,一个是数据输出的sink,sink负责将数据发送到外部指定的目的地。source接收到数据之后,将数据发送给channel,chanel作为一个数据缓冲区会临时存放这些数据,随后sink会将channel中的数据发送到指定的地方,例如HDFS等。注意:只有在sink将channel中的数据成功发送出去之后,channel才会将临时数据进行删除,这种机制保证了数据传输的可靠性与安全性。

五、Flume的安装与配置

gent.sinks = HDFS
  
agent.sources = sql-source
agent.sources.sql-source.type = org.keedio.flume.source.SQLSource
#mysql conn  
agent.sources.sql-source.hibernate.connection.url = jdbc:mysql://xx.xx.xx.xx:3306/data_dev
agent.sources.sql-source.hibernate.connection.user = root
agent.sources.sql-source.hibernate.connection.password = xxxxxxx
agent.sources.sql-source.hibernate.connection.autocommit = true
agent.sources.sql-source.table = src_table_detail
agent.sources.sql-source.start.from = 0
agent.sources.sql-source.custom.query = select * from src_table_detail where id > $@$ order by id
agent.sources.sql-source.batch.size = 100
agent.sources.sql-source.max.rows = 100
agent.sources.sql-source.hibernate.dialect = org.hibernate.dialect.MySQL5Dialect
agent.sources.sql-source.hibernate.connection.driver_class = com.mysql.jdbc.Driver
agent.sources.sql-source.run.query.delay=5000 
# Status file is used to save last readed row  
agent.sources.sql-source.status.file.path = /home/xxxx/log 
agent.sources.sql-source.status.file.name = sql-source.sqlSource.status
agent.sources.sql-source.hibernate.connection.provider_class = org.hibernate.connection.C3P0ConnectionProvider  
agent.sources.sql-source.hibernate.c3p0.min_size=1  
agent.sources.sql-source.hibernate.c3p0.max_size=10   
 
#hdfs
agent.sinks.HDFS.channel = ch1
agent.sinks.HDFS.type = hdfs
agent.sinks.HDFS.hdfs.path = hdfs://nbd-hdfs/user/hive/warehouse/xxx.db
agent.sinks.HDFS.hdfs.fileType = DataStream
agent.sinks.HDFS.hdfs.writeFormat = Text
agent.sinks.HDFS.hdfs.rollSize = 268435456 
agent.sinks.HDFS.hdfs.rollInterval = 0
agent.sinks.HDFS.hdfs.rollCount = 0

启动flume bin/flume-ng agent -c conf/ -f conf/flume.conf -n agent --no-reload-conf -Dflume.root.logger=INFO,console
mysql新增的数据会实时进入hdfs

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,332评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,930评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,204评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,348评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,356评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,447评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,862评论 3 394
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,516评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,710评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,518评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,582评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,295评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,848评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,881评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,121评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,737评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,280评论 2 341

推荐阅读更多精彩内容

  • title: Flume构建日志采集系统date: 2018-02-03 19:45tags: [flume,k...
    溯水心生阅读 16,122评论 3 25
  • 介绍 概述 Apache Flume是为有效收集聚合和移动大量来自不同源到中心数据存储而设计的可分布,可靠的,可用...
    ximengchj阅读 3,512评论 0 13
  • 面对以上的问题,我们如何将这些日志移动到hdfs集群上尼???? 第一种方案:使用shell脚本cp 文件,然后通...
    机灵鬼鬼阅读 1,373评论 1 1
  • 阅读目录(Content) 一、Flume简介 二、Flume特点 三、Flume的一些核心概念 3.1、Agen...
    达微阅读 4,702评论 0 9
  • 一、Flume简介 flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flu...
    superxcp阅读 931评论 0 2