好玩的分词(3)——绘制《三体》全集词云

另参见:好玩的分词(2)——分析了《三体》全集,我看到了这样的三体

好玩的分词(2)——分析了《三体》全集,我看到了这样的三体一文中,通过分词获取到了三体全集文本中topn的词及词频,那么本文中进一步用词云的形式来展现出来。

废话不多说,直接上代码:

#!/usr/bin/python
# coding:utf-8
# 绘制一个《三体》全集词云
import sys
from collections import Counter
import jieba.posseg as psg
import matplotlib.pyplot as plt
from scipy.misc import imread
from wordcloud import WordCloud,ImageColorGenerator

# 对文本分词并标注词性,并缓存到文件
def cut_and_cache(text):
    # 将文本分词,并附带上词性,因为数据量比较大,防止每次运行脚本都花大量时间,所以第一次分词后就将结果存入文件cut_result.txt中
    # 相当于做一个缓存,格式为每个词占一行,每一行的内容为:
    # 词,词性
    words_with_attr = [(x.word,x.flag) for x in psg.cut(text) if len(x.word) >= 2]
    print len(words_with_attr)
    with open('cut_result.txt','w+') as f:
        for x in words_with_attr:
            f.write('{0}\t{1}\n'.format(x[0],x[1]))  
    return words_with_attr 

# 从cut_result.txt中读取带词性的分词结果列表
def read_cut_result():
    words_with_attr = []
    with open('cut_result.txt','r') as f:
        for x in f.readlines():
            # 这里解码成utf-8格式,是为了防止后面生成词云的时候出现乱码
            x = x.decode('utf-8')
            pair = x.split()
            if len(pair) < 2:
                continue
            words_with_attr.append((pair[0],pair[1]))
    return words_with_attr

# 统计在分词表中出现次数排名前topn的词的列表,并将结果输出到文件topn_words.txt中,每行一个词,格式为:
# 词,出现次数
def get_topn_words(words,topn):
    c = Counter(words).most_common(topn)
    top_words_with_freq = {}
    with open('top{0}_words.txt'.format(topn),'w+') as f:
        for x in c:
            f.write('{0},{1}\n'.format(x[0],x[1]))
            top_words_with_freq[x[0]] = x[1]
    return top_words_with_freq

# 传入文本文件的路径file_path和topn,获取文本文件中topn关键词列表及词频
def get_top_words(file_path,topn):
    # 读取文本文件,然后分词并缓存,只需运行一次,后续运行脚本可注释掉下面两行
    text = open(file_path).read()
    words_with_attr = cut_and_cache(text)
    
    # 从cut_result.txt中读取带词性的分词结果列表
    words_with_attr = read_cut_result()
    
    # 要过滤掉的词性列表
    stop_attr = ['a','ad','b','c','d','f','df','m','mq','p','r','rr','s','t','u','v','z']
    
    # 过滤掉不需要的词性的词
    words = [x[0] for x in words_with_attr if x[1] not in stop_attr]
    
    # 获取topn的词并存入文件topn_words.txt,top_words_with_freq为一个字典,在生成词云的时候会用到,格式为:
    # {'aa':1002,'bb':879,'cc':456}
    top_words_with_freq = get_topn_words(words = words,topn = topn)
    
    return top_words_with_freq

# 根据传入的背景图片路径和词频字典、字体文件,生成指定名称的词云图片
def generate_word_cloud(img_bg_path,top_words_with_freq,font_path,to_save_img_path,background_color = 'white'):
    # 读取背景图形
    img_bg = imread(img_bg_path)
    
    # 创建词云对象
    wc = WordCloud(font_path = font_path,  # 设置字体
    background_color = background_color,  # 词云图片的背景颜色,默认为白色
    max_words = 500,  # 最大显示词数为1000
    mask = img_bg,  # 背景图片蒙版
    max_font_size = 50,  # 字体最大字号
    random_state = 30,  # 字体的最多模式
    width = 1000,  # 词云图片宽度
    margin = 5,  # 词与词之间的间距
    height = 700)  # 词云图片高度
    
    # 用top_words_with_freq生成词云内容
    wc.generate_from_frequencies(top_words_with_freq)
    
    # 用matplotlib绘出词云图片显示出来
    plt.imshow(wc)
    plt.axis('off')
    plt.show()
    
    # 如果背景图片颜色比较鲜明,可以用如下两行代码获取背景图片颜色函数,然后生成和背景图片颜色色调相似的词云
    #img_bg_colors = ImageColorGenerator(img_bg)
    #plt.imshow(wc.recolor(color_func = img_bg_colors))
    
    # 将词云图片保存成图片
    wc.to_file(to_save_img_path)

def main():
    # 设置环境为utf-8编码格式,防止处理中文出错
    reload(sys)
    sys.setdefaultencoding('utf-8')
    
    # 获取topn词汇的'词:词频'字典,santi.txt是当前目录下三体全集的文本
    top_words_with_freq = get_top_words('./santi.txt',300)
    
    # 生成词云图片,bg.jpg是当前目录下的一副背景图片,yahei.ttf是当前目录下微软雅黑字体文件,santi_cloud.png是要生成的词云图片名
    generate_word_cloud('./bg.jpg',top_words_with_freq,'./yahei.ttf','./santi_cloud.png')
    
    print 'finish'
    
if __name__ == '__main__':
    main()
    

上述代码中,bg.jpg图片如下,是一只豹子的剪影,像一个在黑暗森林中潜伏的猎人:


注:作为词云背景的图片一定要轮廓分明,且图片主体颜色要和图片自身的背景颜色对比度较大,这样生成的词云图片才能更清晰。一般剪影图片更容易满足这种要求。

此外,三体全集santi.txt文本从网上很好搜到。

注:有个坑要注意,就是在生成词云前要把santi.txt的编码格式转为utf-8格式,否则可能并出不来预期的结果。

运行上述代码,生成的词云图片如下:


最后,可以将这里的背景图片和文本文件修改成其他的图片和文本路径,那么运行上面代码就可以马上得到自己想要的词云了!


代码已经放到:我的GitHub

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容