题目如下:
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0
? Find all unique triplets in the array which gives the sum of zero.
** Notice
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
解法一:
用递归一个个去组装检测,尝试所以组合。
首先需要把数组排序,然后后面我们才能判断检测相同数字。
然后在递归函数中,我们不断把数字加入subset里面,只要subset的size达到3而且里面的📚加起来等于0,我们就把这个subset加入到输出结果中去。
public class Solution {
/**
* @param numbers : Give an array numbers of n integer
* @return : Find all unique triplets in the array which gives the sum of zero.
*/
public ArrayList<ArrayList<Integer>> threeSum(int[] numbers) {
// write your code here
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
Arrays.sort(numbers);
if( numbers.length == 0 ) {
return result;
}
findSets(numbers, result, new ArrayList<Integer>(), 0);
return result;
}
public void findSets(int[] numbers, ArrayList<ArrayList<Integer>> result, ArrayList<Integer> subset, int startPoniter){
if(subset.size() == 3){
int sum = 0;
for(int d : subset){
sum += d;
}
if (sum == 0){
result.add(new ArrayList<Integer>(subset));
}
return;
}
for(int i = startPoniter; i < numbers.length; i++) {
subset.add(numbers[i]);
findSets(numbers, result, subset, i+1);
subset.remove(subset.size() -1);
while(i < numbers.length-1 && numbers[i] == numbers[i+1]){
i++;
}
}
}
}
解法二:
设置3个指针,初始化分别指向第一个元素target, 第二个元素left, 最后一个元素right。
当left小于right且,三个数加起来为0时候,我们就把它加入结果中。
当三个数加起来小于0,我们把left++,因为前面我们提过数组是排过序的,所以三个数和小于1,我们就把left往大的移。反之当三个数大于1 时候,我们把right往左移动,以获得更小的数字。
public class Solution {
public ArrayList<ArrayList<Integer>> threeSum(int[] num) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
if(num.length < 3) return result;
Arrays.sort(num);
HashSet set = new HashSet();
for(int i=0; i<num.length-2; i++){
int target = num[i];
int left = i+1;
int right = num.length-1;
while(left<right){
if(num[left]+num[right]+target==0){
ArrayList<Integer> subset = new ArrayList<Integer>();
subset.add(target);
subset.add(num[left]);
subset.add(num[right]);
if(set.add(subset)) //check if the set is duplicate
result.add(subset);
left++;
right--;
}else if(num[left]+num[right]+target<0){
left++;
}else if(num[left]+num[right]+target>0){
right--;
}
}
}
return result;
}
}