官网地址:https://www.paddlepaddle.org.cn/
码云仓库:https://gitee.com/paddlepaddle/Paddle
简介
飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。目前,飞桨累计开发者265万,服务企业10万家,基于飞桨开源深度学习平台产生了34万个模型。飞桨助力开发者快速实现AI想法,快速上线AI业务。帮助越来越多的行业完成AI赋能,实现产业智能化升级。
那么,PaddlePaddle 有什么特点?
支持多种深度学习模型 DNN(深度神经网络)、CNN(卷积神经网络)、 RNN(递归神经网络),以及 NTM 这样的复杂记忆模型。
基于 Spark,与它的整合程度很高。
支持 Python 和 C++ 语言。
支持分布式计算。作为它的设计初衷,这使得 PaddlePaddle 能在多 GPU,多台机器上进行并行计算。
相比现有深度学习框架,PaddlePaddle 对开发者来说有什么优势?
首先,是易用性。
相比偏底层的谷歌 TensorFlow,PaddlePaddle 的特点非常明显:它能让开发者聚焦于构建深度学习模型的高层部分。项目负责人徐伟介绍:
“在 PaddlePaddle 的帮助下,深度学习模型的设计如同编写伪代码一样容易,设计师只需关注模型的高层结构,而无需担心任何琐碎的底层问题。未来,程序员可以快速应用深度学习模型来解决医疗、金融等实际问题,让人工智能发挥出最大作用。”
抛开底层编码,使得 TensorFlow 里需要数行代码来实现的功能,可能在 PaddlePaddle 里只需要一两行。徐伟表示,用 PaddlePaddle 编写的机器翻译程序只需要“其他”深度学习工具四分之一的代码。这显然考虑到该领域广大的初入门新手,为他们降低开发机器学习模型的门槛。这带来的直接好处是,开发者使用 PaddlePaddle 更容易上手。
其次,是更快的速度。
如上所说,PaddlePaddle 上的代码更简洁,用它来开发模型显然能为开发者省去一些时间。这使得 PaddlePaddle 很适合于工业应用,尤其是需要快速开发的场景。
另外,自诞生之日起,它就专注于充分利用 GPU 集群的性能,为分布式环境的并行计算进行加速。这使得在 PebblePebble 上,用大规模数据进行 AI 训练和推理可能要比 TensorFlow 这样的平台要快很多。
说到这里,业内对 PaddlePaddle 怎么看?
首先不得不提的是 Caffe,许多资深开发者认为 PaddlePaddle 的设计理念与 Caffe 十分相似,怀疑是百度对标 Caffe 开发出的替代品。这有点类似于谷歌 TensorFlow 与 Thano 之间的替代关系。
知乎上,Caffe 的创始人贾杨清对 PaddlePaddle 评价道:
"很高质量的 GPU 代码"
"非常好的 RNN 设计"
"设计很干净,没有太多的 abstraction,这一点比 TensorFlow 好很多"
"设计思路有点老"
"整体的设计感觉和 Caffe ‘心有灵犀’,同时解决了 Caffe 早期设计当中的一些问题”
最后,贾表示 PaddlePaddle 的整体架构功底很深,是下了功夫的。这方面,倒是赢得了开发者的普遍认同。
总结起来,业内对 PaddlePaddle 的总体评价是“设计干净、简洁,稳定,速度较快,显存占用较小”。
但是,具有这些优点,不保证 PaddlePaddle 就一定能在群雄割据的机器学习开源世界占有一席之地。有国外开发者表示, PaddlePaddle 的最大优点是快。但是,比 TensorFlow 快的开源框架其实有很多:比如 MXNet,Nervana System 的 Neon,以及三星的 Veles,它们也都对分布式计算都很好的支持,但都不如 TensorFlow 普及程度高。这其中有 TensorFlow 庞大用户基础的原因,也得益于谷歌自家 AI 系统的加持。
百度的 AI 产品能够对普及 PaddlePaddle 产生多大的帮助,尚需观察。雷锋网获知,它已经应用于百度旗下的多项业务。百度表示:
“PaddlePaddle 已在百度 30 多项主要产品和服务之中发挥着巨大的作用,如外卖的预估出餐时间、预判网盘故障时间点、精准推荐用户所需信息、海量图像识别分类、字符识别(OCR)、病毒和垃圾信息检测、机器翻译和自动驾驶等领域。”
最后,我们来看看对于自家推出的 PaddlePaddle,李彦宏怎么说:
“经过了五六年的积累,PaddlePaddle 实际上是百度深度学习算法的引擎,把源代码开放出来,让同学们、让社会上所有的年轻人能够学习,在它的基础上进行改进,我相信他们会发挥出来他们的创造力,去做到很多我们连想都没有想过的东西。”
安装
安装最新稳定版本:
# CPU
pip install paddlepaddle
# GPU
pip install paddlepaddle-gpu
更多安装信息详见官网安装说明
PaddlePaddle用户可领取免费Tesla V100在线算力资源,训练模型更高效。每日登陆即送12小时,连续五天运行再加送48小时,前往使用免费算力。
四大领先技术
开发便捷的产业级深度学习框架
飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,符合他们的开发习惯。同时支持声明式和命令式编程,兼具开发的灵活性和高性能。网络结构自动设计,模型效果超越人类专家。
支持超大规模深度学习模型的训练
飞桨突破了超大规模深度学习模型训练技术,实现了支持千亿特征、万亿参数、数百节点的开源大规模训练平台,攻克了超大规模深度学习模型的在线学习难题,实现了万亿规模参数模型的实时更新。查看详情
多端多平台部署的高性能推理引擎
飞桨不仅兼容其他开源框架训练的模型,还可以轻松地部署到不同架构的平台设备上。同时,飞桨的推理速度也是全面领先的。尤其经过了跟华为麒麟NPU的软硬一体优化,使得飞桨在NPU上的推理速度进一步突破。查看详情
面向产业应用,开源开放覆盖多领域的工业级模型库。
飞桨官方支持100多个经过产业实践长期打磨的主流模型,其中包括在国际竞赛中夺得冠军的模型;同时开源开放200多个预训练模型,助力快速的产业应用。查看详情
飞桨产品全景
覆盖图像、自然语言处理、推荐等多种方向的官方模型GitHub Gitee 安装飞桨
飞桨源于产业实践,始终致力于与产业深入融合。目前飞桨已广泛应用于工业、农业、服务业等,服务 265万开发者,与合作伙伴一起帮助越来越多的行业完成 AI 赋能。
文档
或许您想从深度学习基础开始学习飞桨
新的API支持代码更少更简洁的程序
拓展