【傻瓜美图】cellphonedb气泡图

从cellphonedb得到以下四个文件,用中间两个画图


首先对数据进行过滤
mypvals <- read.table("statistical_analysis_pvalues_cj.txt",header = T,sep = "\t",stringsAsFactors = F)
mymeans <- read.table("statistical_analysis_means_cj.txt",header = T,sep = "\t",stringsAsFactors = F)
##对数据过滤,至少有一个受配体对pvals小于005才被保留
logi <- apply(mypvals[,5:ncol(mypvals)]<0.05, 1, sum) 
choose_pvalues <- mypvals[logi>=1,]

# 去掉空值
logi1 <- choose_pvalues$gene_a != ""
logi2 <- choose_pvalues$gene_b != ""
logi <- logi1 & logi2
choose_pvalues <- choose_pvalues[logi,]
#同样条件过滤meanS
choose_means <- mymeans[mymeans$id_cp_interaction %in% choose_pvalues$id_cp_interaction,]


##示例数据取前50行
choose_means <-choose_means[1:20,]
choose_pvalues <- choose_pvalues[1:20,]

画图

# 将choose_pvalues和choose_means数据宽转长
library(tidyverse)
meansdf <- choose_means %>% reshape2::melt()
meansdf <- data.frame(interacting_pair = paste0(meansdf$gene_a,"_",meansdf$gene_b),
                      CC = meansdf$variable,
                      means = meansdf$value)
pvalsdf <- choose_pvalues %>% reshape2::melt()
pvalsdf <- data.frame(interacting_pair = paste0(pvalsdf$gene_a,"_",pvalsdf$gene_b),
                      CC = pvalsdf$variable,
                      pvals = pvalsdf$value)

# 合并p值和mean文件
pvalsdf$joinlab<- paste0(pvalsdf$interacting_pair,"_",pvalsdf$CC)
meansdf$joinlab<- paste0(meansdf$interacting_pair,"_",meansdf$CC)
pldf <- merge(pvalsdf,meansdf,by = "joinlab")

# dotplot可视化
summary((filter(pldf,means >0))$means)
head(pldf)


ggplot(data = pldf, aes(x = CC.x, y = interacting_pair.x)) +
  geom_point(aes(size = -log10(pvals), fill = log2(means)), 
             shape = 21, color = 'black', stroke = 1) +
  labs(x = 'cell', y = 'interacting_pair.x') +
  scale_size_area(name = 'log10(pvalue)',
                  breaks = seq(0, 2, 0.5),
                  limits = c(0, 2),
                  max_size = 5.5) +
  scale_fill_gradient2(low = '#08519c', 
                       mid = 'white', 
                       high = 'red',
                       limits = c(-5, 5),
                       name = 'log2(means)',
                       na.value = '#08519c') +
  theme(strip.background = element_blank(),
        strip.text.x = element_text(family = 'sans', size = 15),
        panel.background = element_rect(fill = 'white'),
        panel.grid = element_blank(),
        panel.border = element_rect(fill = NA, color = 'gray', linewidth = 2),
        axis.title.x = element_text(family = 'sans', face = 'bold', size = 15),
        axis.text = element_text(family = 'sans', colour = 'black'),
        axis.ticks = element_line(linewidth = 1))+
  theme(axis.text.x = element_text(angle = -45,hjust = -0.1,vjust = 0.8))
image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,406评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,976评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,302评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,366评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,372评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,457评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,872评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,521评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,717评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,523评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,590评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,299评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,859评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,883评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,127评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,760评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,290评论 2 342

推荐阅读更多精彩内容