python 自定义划分区间,并把各区间合并

最近在做分箱统计时,想把一些点给设为参数,方便之后调整。

用到的函数cut


import numpy as np

def cus_cut_1(low_threshole, up_threshole, bins):

    """

    个性化划分:

    low_threshole:要均匀划分数据的下界

    up_threshole:要均匀划分数据的上界

    bins: 在上下界之间的等分数

    """

    bin_0 = pd.IntervalIndex.from_tuples([(0, low_threshole)])                      # 0-下界

    bin_1 = pd.interval_range(start=low_threshole, end=up_threshole, periods=bins)  # 下界-上界均分

    bin_2 = pd.IntervalIndex.from_tuples([(up_threshole, 1)])                        # 上界-1

    return bin_0, bin_1, bin_2


bin_0, bin_1, bin_2 = cus_cut_1(0.2,0.8,5)

bin_0 = bin_0.tolist()

bin_1 = bin_1.tolist()

bin_2 = bin_2.tolist()

bin_0.extend(bin_1)                  # 把各区间的list拼接起来

bin_0.extend(bin_2)

ii = pd.IntervalIndex(bin_0)          # 转为区间

print(ii)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,681评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,710评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,623评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,202评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,232评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,368评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,795评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,461评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,647评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,476评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,525评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,226评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,785评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,857评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,090评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,647评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,215评论 2 341

推荐阅读更多精彩内容

  • 特征工程(feature engineering):利用领域知识和现有数据,创造出新的特征,用于机器学习算法;可以...
    rowcolumn阅读 673评论 2 1
  • 一、分析背景 电商平台的发展取决于用户。电商平台如何让用户点击里面的内容,就是留住用户的第一步。电商平台的首页往往...
    我姓许啊阅读 1,487评论 0 0
  • 数据预处理包括数据的清洗、合并、重塑与转换,解决数据缺失、极端值、数据格式不统一等问题,本文通过介绍Pandas中...
    小哲1998阅读 2,910评论 0 3
  • pandas 数据分析【转】 frompandasimportSeries, DataFrameimportpan...
    gongdiwudu阅读 1,297评论 0 1
  • 之前一直没有实践评分卡模型,今天从网上看到有相关的代码,先保存下,后续需要再细看。 https://blog.cs...
    丙吉阅读 1,164评论 0 0