最优树之赫夫曼树与赫夫曼编码的实现二

上一文我们刚研究了赫夫曼树的原理和实现,

这节将讲一下赫夫曼树的运用:赫夫曼编码。

基本介绍

赫夫曼编码也翻译为哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,属于一种程序算法
赫夫曼编码是赫哈夫曼树在电讯通信中的经典的应用之一。

赫夫曼编码广泛地用于数据文件压缩。其压缩率通常在20%~90%之间
赫夫曼码是可变字长编码(VLC)的一种。Huffman于1952年提出一种编码方法,称之为最佳编码。

原理刨析

原理剖析

<h2>通信领域中信息的处理方式1-定长编码</h2>

i like like like java do you like a java // 共40个字符(包括空格)
105 32 108 105 107 101 32 108 105 107 101 32 108 105 107 101 32 106 97 118 97 32 100 111 32 121 111 117 32 108 105 107 101 32 97 32 106 97 118 97 //对应Ascii码

01101001 00100000 01101100 01101001 01101011 01100101 00100000 01101100 01101001 01101011 01100101 00100000 01101100 01101001 01101011 01100101 00100000 01101010 01100001 01110110 01100001 00100000 01100100 01101111 00100000 01111001 01101111 01110101 00100000 01101100 01101001 01101011 01100101 00100000 01100001 00100000 01101010 01100001 01110110 01100001 //对应的二进制
按照二进制来传递信息,总的长度是 359 (包括空格)
在线转码 工具 :https://www.mokuge.com/tool/asciito16/

<h2>通信领域中信息的处理方式2-变长编码</h2>

i like like like java do you like a java // 共40个字符(包括空格)

d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数
0= , 1=a, 10=i, 11=e, 100=k, 101=l, 110=o, 111=v, 1000=j, 1001=u, 1010=y, 1011=d� 说明:按照各个字符出现的次数进行编码,原则是出现次数越多的,则编码越小,比如 空格出现了9 次, 编码为0 ,其它依次类推.

按照上面给各个字符规定的编码,则我们在传输 "i like like like java do you like a java" 数据时,编码就是 �10010110100...
字符的编码都不能是其他字符编码的前缀,符合此要求的编码叫做前缀编码, 即不能匹配到重复的编码(这个在赫夫曼编码中,我们还要进行举例说明, 不捉急)

<h2>通信领域中信息的处理方式3-赫夫曼编码</h2>

i like like like java do you like a java // 共40个字符(包括空格)

d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数
按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值.(图后)

image

//根据赫夫曼树,给各个字符
//规定编码 , 向左的路径为0
//向右的路径为1 , 编码如下:

o: 1000 u: 10010 d: 100110 y: 100111 i: 101
a : 110 k: 1110 e: 1111 j: 0000 v: 0001
l: 001 " " : 01

按照上面的赫夫曼编码,我们的"i like like like java do you like a java" 字符串对应的编码为 (注意这里我们使用的无损压缩)

1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100110111101111011100100001100001110

长度为 : 133

说明:

原来长度是 359 , 压缩了 (359-133) / 359 = 62.9%

此编码满足前缀编码, 即字符的编码都不能是其他字符编码的前缀。不会造成匹配的多义性.

注意:

这个赫夫曼树根据排序方法不同,也可能不太一样,这样对应的赫夫曼编码也不完全一样,但是wpl 是一样的,都是最小的, 比如: 如果我们让每次生成的新的二叉树总是排在权值相同的二叉树的最后一个,则生成的二叉树为:


image

但是长度是一样的,同时构成的赫夫曼树的WPL也是一样的。

实践--数据压缩

最佳实践-数据压缩(创建赫夫曼树)

将给出的一段文本,比如 "i like like like java do you like a java" , 根据前面的讲的赫夫曼编码原理,对其进行数据压缩处理 ,形式如 "1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100110111101111011100100001100001110
"

步骤

传输的 字符串

  1. i like like like java do you like a java

  2. d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数

  3. 按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值

步骤:

构成赫夫曼树的步骤:

  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树

  2. 取出根节点权值最小的两颗二叉树

  3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和

  4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树

  5. 根据赫夫曼树,给各个字符,规定编码 (前缀编码), 向左的路径为0 向右的路径为1 , 编码如下:
    o: 1000 u: 10010 d: 100110 y: 100111 i: 101
    a : 110 k: 1110 e: 1111 j: 0000 v: 0001
    l: 001 : 01

  6. 按照上面的赫夫曼编码,我们的"i like like like java do you like a java" 字符串对应的编码为 (注意这里我们使用的无损压缩)
    1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100110111101111011100100001100001110 通过赫夫曼编码处理 长度为 133

代码实现

思路:

(1) Node { data (存放数据), weight (权值), left 和 right }

(2) 得到 "i like like like java do you like a java" 对应的 byte[] 数组

(3) 编写一个方法,将准备构建赫夫曼树的Node 节点放到 List , 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......], 体现 d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9

(4) 可以通过List 创建对应的赫夫曼树.

创建节点

//创建Node ,待数据和权值
class Node implements Comparable<Node>  {
    Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32
    int weight; //权值, 表示字符出现的次数
    Node left;//
    Node right;
    public Node(Byte data, int weight) {
        
        this.data = data;
        this.weight = weight;
    }
    @Override
    public int compareTo(Node o) {
        // 从小到大排序
        return this.weight - o.weight;
    }
    @Override
    public String toString() {
        return "Node [data = " + data + " weight=" + weight + "]";
    }
    
    //前序遍历
    public void preOrder() {
        System.out.println(this);
        if(this.left != null) {
            this.left.preOrder();
        }
        if(this.right != null) {
            this.right.preOrder();
        }
    }
}

创建接收字节数组,并转化为匹配权值和数据本身的list

/**
     * 
     * @param bytes 接收字节数组
     * @return 返回的就是 List 形式   [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],
     */
    private static List<Node> getNodes(byte[] bytes) {
        
        //1创建一个ArrayList
        ArrayList<Node> nodes = new ArrayList<Node>();
        
        //遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
        Map<Byte, Integer> counts = new HashMap<>();
        for (byte b : bytes) {
            Integer count = counts.get(b);
            if (count == null) { // Map还没有这个字符数据,第一次
                counts.put(b, 1);
            } else {
                counts.put(b, count + 1);
            }
        }
        
        //把每一个键值对转成一个Node 对象,并加入到nodes集合
        //遍历map
        for(Map.Entry<Byte, Integer> entry: counts.entrySet()) {
            nodes.add(new Node(entry.getKey(), entry.getValue()));
        }
        return nodes;
        
    }

构造赫夫曼树

    //可以通过List 创建对应的赫夫曼树
    private static Node createHuffmanTree(List<Node> nodes) {
        
        while(nodes.size() > 1) {
            //排序, 从小到大
            Collections.sort(nodes);
            //取出第一颗最小的二叉树
            Node leftNode = nodes.get(0);
            //取出第二颗最小的二叉树
            Node rightNode = nodes.get(1);
            //创建一颗新的二叉树,它的根节点 没有data, 只有权值
            Node parent = new Node(null, leftNode.weight + rightNode.weight);
            parent.left = leftNode;
            parent.right = rightNode;
            
            //将已经处理的两颗二叉树从nodes删除
            nodes.remove(leftNode);
            nodes.remove(rightNode);
            //将新的二叉树,加入到nodes
            nodes.add(parent);
            
        }
        //nodes 最后的结点,就是赫夫曼树的根结点
        return nodes.get(0);
    }

测试是否符合预期结果:

public static void main(String[] args) {
        String content = "i like like like java do you like a java";
        byte[] contentBytes = content.getBytes();
        System.out.println(contentBytes.length); //40

        List<HuffManNode> nodes = getNodes(contentBytes);
        HuffManNode node = createHuffManNode(nodes);
        preOrder(node);
    }

预期结果:,前序遍历输出得

image

选择几个data有值得,查具体的Ascall码,对比对应的次数weight是否正确。全部正确。

生成赫夫曼编码:

//生成赫夫曼树对应的赫夫曼编码
    //思路:
    //1. 将赫夫曼编码表存放在 Map<Byte,String> 形式
    //   生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
    static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>();
    //2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
    static StringBuilder stringBuilder = new StringBuilder();
    
    
    //为了调用方便,我们重载 getCodes
    private static Map<Byte, String> getCodes(Node root) {
        if(root == null) {
            return null;
        }
        //处理root的左子树
        getCodes(root.left, "0", stringBuilder);
        //处理root的右子树
        getCodes(root.right, "1", stringBuilder);
        return huffmanCodes;
    }
    
    /**
     * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
     * @param node  传入结点
     * @param code  路径: 左子结点是 0, 右子结点 1
     * @param stringBuilder 用于拼接路径
     */
    private static void getCodes(Node node, String code, StringBuilder stringBuilder) {
        StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
        //将code 加入到 stringBuilder2
        stringBuilder2.append(code);
        if(node != null) { //如果node == null不处理
            //判断当前node 是叶子结点还是非叶子结点
            if(node.data == null) { //非叶子结点
                //递归处理
                //向左递归
                getCodes(node.left, "0", stringBuilder2);
                //向右递归
                getCodes(node.right, "1", stringBuilder2);
            } else { //说明是一个叶子结点
                //就表示找到某个叶子结点的最后
                huffmanCodes.put(node.data, stringBuilder2.toString());
            }
        }
    }
    
       Map<Byte, String> huffManNodeMap = getCodes(node);

        for(Map.Entry<Byte,String> entry:huffManNodeMap.entrySet()){
            System.out.println(entry.getKey()+":路径值为"+entry.getValue());
        }

结果为:


image

打印成二进制数,相当于压缩数据,进行数据压缩

private static byte[] huffmanZip(byte[] bytes) {
        List<HuffManNode> nodes = getNodes(bytes);
        //根据 nodes 创建的赫夫曼树
        HuffManNode huffmanTreeRoot = createHuffManNode(nodes);
        //对应的赫夫曼编码(根据 赫夫曼树)
        Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
        //根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
        byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
        return huffmanCodeBytes;
    }
    
private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {

        //1.利用 huffmanCodes 将  bytes 转成  赫夫曼编码对应的字符串
        StringBuilder stringBuilder = new StringBuilder();
        //遍历bytes 数组
        for (byte b : bytes) {
            stringBuilder.append(huffmanCodes.get(b));
        }
        System.out.println("赫夫曼编码为"+stringBuilder.toString());
        int len;

        if(stringBuilder.length() % 8 == 0){
            len = stringBuilder.length() / 8;
        } else {
            len = stringBuilder.length() /8 +1;
        }

        //创建存储压缩后的数组
        byte[] huffmanCodeBytes = new byte[len];
        int index = 0;
        for(int i=0;i< stringBuilder.length();i+=8){

            String strByte;

            if(i+8 > stringBuilder.length()) {//不够8位
                strByte = stringBuilder.substring(i);
            }else{
                strByte = stringBuilder.substring(i, i + 8);
            }

            //将strByte 转成一个byte,放入到 huffmanCodeBytes
            huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2);
            index++;
        }
        return huffmanCodeBytes;
    }

测试:

 String content = "i like like like java do you like a java";
 byte[] contentBytes = content.getBytes();
 System.out.println("压缩后的数组(转为二进制格式):"+Arrays.toString(huffmanZip(contentBytes)));

结果:

image

原来的字符为40,现在最长为17个字节。无损压缩率为57%。

如何将压缩后的字节码数组解压成原来的数据呢?

/**
     * 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码
     * @param b 传入的 byte
     * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位
     * @return 是该b 对应的二进制的字符串,(注意是按补码返回)
     */
    private static String byteToBitString(boolean flag, byte b) {
        //使用变量保存 b
        int temp = b; //将 b 转成 int
        //如果是正数我们还存在补高位
        if(flag) {
            temp |= 256; //按位与 256  1 0000 0000  | 0000 0001 => 1 0000 0001
        }
        String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码
        if(flag) {
            return str.substring(str.length() - 8);
        } else {
            return str;
        }
    }
    
    
//编写一个方法,完成对压缩数据的解码
    /**
     * 
     * @param huffmanCodes 赫夫曼编码表 map
     * @param huffmanBytes 赫夫曼编码得到的字节数组
     * @return 就是原来的字符串对应的数组
     */
    private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) {
        
        //1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...
        StringBuilder stringBuilder = new StringBuilder();
        //将byte数组转成二进制的字符串
        for(int i = 0; i < huffmanBytes.length; i++) {
            byte b = huffmanBytes[i];
            //判断是不是最后一个字节
            boolean flag = (i == huffmanBytes.length - 1);
            stringBuilder.append(byteToBitString(!flag, b));
        }
        //把字符串安装指定的赫夫曼编码进行解码
        //把赫夫曼编码表进行调换,因为反向查询 a->100 100->a
        Map<String, Byte>  map = new HashMap<String,Byte>();
        for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) {
            map.put(entry.getValue(), entry.getKey());
        }
        
        //创建要给集合,存放byte
        List<Byte> list = new ArrayList<>();
        //i 可以理解成就是索引,扫描 stringBuilder 
        for(int  i = 0; i < stringBuilder.length(); ) {
            int count = 1; // 小的计数器
            boolean flag = true;
            Byte b = null;
            
            while(flag) {
                //1010100010111...
                //递增的取出 key 1 
                String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符
                b = map.get(key);
                if(b == null) {//说明没有匹配到
                    count++;
                }else {
                    //匹配到
                    flag = false;
                }
            }
            list.add(b);
            i += count;//i 直接移动到 count  
        }
        //当for循环结束后,我们list中就存放了所有的字符  "i like like like java do you like a java"
        //把list 中的数据放入到byte[] 并返回
        byte b[] = new byte[list.size()];
        for(int i = 0;i < b.length; i++) {
            b[i] = list.get(i);
        }
        return b;
    }   

大家可以自己测试运行下。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容