Elasticsearch - 文档的基本操作

注:此文档仅适用于 Elasticsearch > 5.0 版本

Index API

index api 用于在指定的索引和类型下添加或修改文档。例如:

PUT twitter/tweet/1
{
    "user" : "kimchy",
    "post_date" : "2009-11-15T14:12:12",
    "message" : "trying out Elasticsearch"
}

路径 twitter/tweet/1 中包含了三部分信息,其中,twitter 表示索引名称,tweet 表示类型名称,1表示文档的 id ,文档的 id 是可选的。

如果 id 不存在,表示新增一个文档,并为这个文档分配一个 id

如果 id 存在,并且这个 id 对应的文档在 Elasticsearch 中存在,则表示更新文档,这时的更新表示全量更新,直接替换。如果 id 对应的文档在 Elasticsearch 中不存在,则会在 Elasticsearch 中创建新的文档,文档的 idpath 上的 id

在 Elasticsearch 中,索引、类型、ID 组合定位一个文档。也就是说,不同类型下,ID 是可以重复的。

Create API

Create API 也用于创建文档,与 index API 不同,Create API只用于创建文档,没有更新文档的功能。并且,Create API 必须提供 id ,当相同id的文档已经存在时,Elasticsearch 会返回 409 Conflicat 响应码。

PUT twitter/tweet/1/_create
{
    "user" : "kimchy",
    "post_date" : "2009-11-15T14:12:12",
    "message" : "trying out Elasticsearch"
}

Get API

GET API 非常简单,它通过索引名称、类型名称、ID这三个信息获取制定文档:

GET twitter/tweet/1

返回的信息中包含了文档的一些元数据,以及 _source 属性。

{
    "_index" : "twitter",
    "_type" : "tweet",
    "_id" : "1",
    "_version" : 1,
    "found": true,
    "_source" : {
        "user" : "kimchy",
        "date" : "2009-11-15T14:12:12",
        "likes": 0,
        "message" : "trying out Elasticsearch"
    }
}

如果将 GET 请求变成 DELETE 请求,则表示删除文档。

DELETE twitter/tweet/1

Update API

在 index API 中,我们已经可以进行更新文档操作了。但是使用 index API 时,更新操作是全量更新的,如果我只想更新文档的一个字段,那么就需要使用 Update API 来进行增量更新。

POST /website/blog/1/_update
{
    "views": 1
}

乐观并发控制

在数据库中,我们一般使用事务来处理冲突的情况。在 Elasticsearch 中,我们一般使用乐观锁的方式来避免冲突。

在前面的例子中,我们可能注意到文档都有一个 _version 的元信息,这个信息表示文档的版本号,当文档被修改时,版本号递增。Elasticsearch 就是利用 _version 做的乐观锁。

在更新文档时,我们可以指定 _version 版本,

PUT twitter/tweet/1?version=2
{
    "message" : "elasticsearch now has versioning support, double cool!"
}

上面的例子表示文档只有版本号为 2 时,更新才能成功。如果更新失败,Elasticsearch 会返回 409 Conflict HTTP 响应码,以及一个错误提示的相应体。当冲突发生时,可以使用新的数据重新更新,或者将相关情况告诉用户。

Bulk API

bulk API 允许在单个步骤中进行多次 createindexupdatedelete 请求。 如果你需要索引一个数据流比如日志事件,它可以排队和索引数百或数千批次。

bulk 与其他请求的请求体格式不同,如下所示:

POST /_bulk
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }} 
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title":    "My first blog post" }
{ "index":  { "_index": "website", "_type": "blog" }}
{ "title":    "My second blog post" }
{ "update": { "_index": "website", "_type": "blog", "_id": "123", "_retry_on_conflict" : 3} }
{ "doc" : {"title" : "My updated blog post"} } 

这种格式类似一个有效的单行 JSON 文档 ,它通过换行符(\n)连接到一起。注意两个要点:

  • 每行一定要以换行符(\n)结尾, 包括最后一行 。这些换行符被用作一个标记,可以有效分隔行。
  • 这些行不能包含未转义的换行符,因为他们将会对解析造成干扰。这意味着这个 JSON 能使用 pretty 参数打印。

delete 动作不能有请求体,它后面跟着的是另外一个操作。

bulk 请求的每个子请求都是独立执行,因此某个子请求的失败不会对其他子请求的成功与否造成影响。 如果其中任何子请求失败,则返回值的最顶层的 error 标志被设置为 true ,并且在相应的请求报告出错误明细:

{
   "took": 3,
   "errors": true, 
   "items": [
      {  "create": {
            "_index":   "website",
            "_type":    "blog",
            "_id":      "123",
            "status":   409, 
            "error":    "DocumentAlreadyExistsException 
                        [[website][4] [blog][123]:
                        document already exists]"
      }},
      {  "index": {
            "_index":   "website",
            "_type":    "blog",
            "_id":      "123",
            "_version": 5,
            "status":   200 
      }}
   ]
}

整个批量请求都需要由接收到请求的节点加载到内存中,因此该请求越大,其他请求所能获得的内存就越少。 批量请求的大小有一个最佳值,大于这个值,性能将不再提升,甚至会下降。 但是最佳值不是一个固定的值。它完全取决于硬件、文档的大小和复杂度、索引和搜索的负载的整体情况。一个好的批量大小在开始处理后所占用的物理大小约为 5-15 MB。

Scroll

scroll 查询 可以用来对 Elasticsearch 有效地执行大批量的文档查询,而又不用付出深度分页那种代价。

启用游标查询可以通过在查询的时候设置参数 scroll 的值为我们期望的游标查询的过期时间。 游标查询的过期时间会在每次做查询的时候刷新,所以这个时间只需要足够处理当前批的结果就可以了,而不是处理查询结果的所有文档的所需时间。 这个过期时间的参数很重要,因为保持这个游标查询窗口需要消耗资源,所以我们期望如果不再需要维护这种资源就该早点儿释放掉。 设置这个超时能够让 Elasticsearch 在稍后空闲的时候自动释放这部分资源。

GET /old_index/_search?scroll=1m 
{
    "query": { "match_all": {}},
    "sort" : ["_doc"], 
    "size":  1000
}

size 指的是每次返回的文档个数,这个字段作用于每个分片,实际上每次返回的文档个数最大为 size * number_of_primary_shards

这个查询的返回结果包括一个字段 _scroll_id, 它是一个base64编码的长字符串。 现在我们能传递字段 _scroll_id_search/scroll 查询接口获取下一批结果:

GET /_search/scroll
{
    "scroll": "1m", 
    "scroll_id" : "cXVlcnlUaGVuRmV0Y2g7NTsxMDk5NDpkUmpiR2FjOFNhNnlCM1ZDMWpWYnRROzEwOTk1OmRSamJHYWM4U2E2eUIzVkMxalZidFE7MTA5OTM6ZFJqYkdhYzhTYTZ5QjNWQzFqVmJ0UTsxMTE5MDpBVUtwN2lxc1FLZV8yRGVjWlI2QUVBOzEwOTk2OmRSamJHYWM4U2E2eUIzVkMxalZidFE7MDs="
}

参考资料:

  1. Elasticsearch: 权威指南
  2. Elasticsearch 官方文档
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容