IR-chapter1:Boolean retrieval


Information retrieval

meaning

Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).

keywords: unstructured, large scale - provides a more natural and acceptable way of human-machine interaction compared with daunting database-style searching, also gives more challenge to data organization and query processing.(while In fact, no data is truly unstructured)

IR also covers supporting users in browsing or filtering document
collections or further processing a set of retrieved documents

scale

  • web search
    billions of documents stored on millions of computers
    gather documents to indexed
    build efficient system
    exploit hypertext
    protect from being boosted
  • personal information retrieval
    spotlight, instant search
    email program, search and classification
  • enterprise, institutional, and domain-specific search

An example information retrieval problem

Shakespeare's collected works, containing the words Brutus and Caesar and not Calpurnia.

grep

(How about requiring lager data, more flexible query, ranked retrieval more quickly)

incidence matrix

incidence matrix for Shakespeare' collections
query processing

extremely sparse

terminology

  • boolean retrieval model
    a model for information retrieval in which we can pose any query which is in the form of a Boolean expression of terms.
  • term
    the smallest unit we treat as the element of the set
  • document
    units we have decided to build a retrieval system over
  • collection/corpus
    the group of documents
  • information need
    the topic about which the user desires to know more.
  • query
    what the user convey to the computer.
  • relevant
    a document is relevant if it is the one that the user perceives as containing information of value with respect to their personal informational need.
  • effectiveness
    the quality of its search results
ll type of true and false
  • pricision
    TP/(TP+FP)
  • recall
    TP/(TP+FN)

inverted index/inverted file/index

part of inverted index for Shakespeare's collections
  • vocabulary/lexicon
    the set of terms
  • dictionary
    the data structure of the items
  • posting
    each item in the list
  • posting list
  • postings
    all posting lists

a first take at building an inverted index

  1. collect documents to be indexed
  2. tokenize the text, turning each document into a list of tokens
  3. do linguistic preprocessing, producing a list of normalized tokens, which are the indexing terms
  4. Index the documents that each term occurs in by creating an inverted index, consisting of a dictionary and postings.
4th step
  • storage
    memory - disk(a linked list of fixed length arrays for each term)

processing boolean queries

  • simple conjunctive query
merge algorithm
  • query optimization
    process in increasing order of term frequency
Algorithm for conjunctive queries
  • asymmetric
  • difference is large

The extended Boolean model versus ranked retrieval

  • ranked retrieval model
    such as the vector space model, in which users freely use free text queries
  • the extended Boolean model
    proximity operator: specify that two terms in a query must occur close to each other in a document
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,468评论 5 473
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,620评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,427评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,160评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,197评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,334评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,775评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,444评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,628评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,459评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,508评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,210评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,767评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,850评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,076评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,627评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,196评论 2 341

推荐阅读更多精彩内容

  • 撑着油纸伞,独自 彷徨在悠长、悠长 又寂寥的雨巷, 我希望逢着 一个丁香一样地 结着愁怨的姑娘。 ...
    白樱岚阅读 397评论 0 1
  • 浩瀚书海,选书成了一个问题。 这个问题,第一次真正的正视,一直看的都很任性和随性。不觉得是个问题。直到今天,在微信...
    cissyfriends阅读 1,071评论 0 0
  • 关于减肥的方法,现在真是层出不穷,千千百百种。但究竟什么样的减肥方法,才是最科学、最健康、最有效的呢? 咱们且听听...
    瘦朵朵黄教练阅读 247评论 0 0