概述
文章的内容基于JDK1.7进行分析,之所以选用这个版本,是因为1.8的有些类做了改动,增加了阅读的难度,虽然是1.7,但是对于1.8做了重大改动的内容,文章也会进行说明。
HashMap基于Map接口实现,元素以键值对的方式存储,并且允许使用null 建和null 值, 因为key不允许重复,因此只能有一个键为null,另外HashMap不能保证放入元素的顺序,它是无序的,和放入的顺序并不能相同。HashMap是线程不安全的。
数据结构
继承关系
public class HashMap<K,V>extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
实现接口
Serializable, Cloneable, Map<K,V>
基本属性
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //默认初始化大小 16
static final float DEFAULT_LOAD_FACTOR = 0.75f; //负载因子0.75
static final Entry<?,?>[] EMPTY_TABLE = {}; //初始化的默认数组
transient int size; //HashMap中元素的数量
int threshold; //判断是否需要调整HashMap的容量
源码解析
在进行源码解析之前,先从总体上对HashMap的数据存储结构进行一个大体上的说明。存储结构如上图所示。
HashMap采用Entry数组来存储key-value对,每一个键值对组成了一个Entry实体,Entry类实际上是一个单向的链表结构,它具有Next指针,可以连接下一个Entry实体,依次来解决Hash冲突的问题,因为HashMap是按照Key的hash值来计算Entry在HashMap中存储的位置的,如果hash值相同,而key内容不相等,那么就用链表来解决这种hash冲突。
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
{
//默认初始化的容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//最大的容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//负载因子,当容量达到75%时就进行扩容操作
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//当数组还没有进行扩容操作的时候,共享的一个空表对象
static final Entry<?,?>[] EMPTY_TABLE = {};
//table,进行扩容操作,长度必须2的n次方
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
//Map中包含的元素数量
transient int size;
//阈值,用于判断是否需要扩容(threshold = 容量*负载因子)
int threshold;
//加载因子实际的大小
final float loadFactor;
//HashMap改变的次数
transient int modCount;
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
//内部类,通过vm来修改threshold的值
private static class Holder {
/**
* Table capacity above which to switch to use alternative hashing.
*/
static final int ALTERNATIVE_HASHING_THRESHOLD;
static {
String altThreshold = java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(
"jdk.map.althashing.threshold")); //读取值
int threshold;
try {
threshold = (null != altThreshold) //修改值
? Integer.parseInt(altThreshold)
: ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
// disable alternative hashing if -1
if (threshold == -1) {
threshold = Integer.MAX_VALUE; //设置为Integer能表示的最大值
}
if (threshold < 0) {
throw new IllegalArgumentException("value must be positive integer.");
}
} catch(IllegalArgumentException failed) {
throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
}
ALTERNATIVE_HASHING_THRESHOLD = threshold; //返回
}
}
//HashCode的初始值为 0
transient int hashSeed = 0;
//构造方法,指定初始容量和负载因子
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor; //设置负载因子
threshold = initialCapacity; //初始容量
init(); //不做任何操作
}
//构造方法,指定了初始容量
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//无参构造方法,使用默认的容量大小和负载因子,并调用其他的构造方法
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
//构造函数,参数为指定的Map集合
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
inflateTable(threshold);
putAllForCreate(m);
}
//选择合适的容量值,最好是number的2的幂数
private static int roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative";
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
}
//扩充表,HashMap初始化时是一个空数组,此方法执行重新复制操作,创建一个新的Entry[]
private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize); //capacity为2的幂数,大于等于toSize
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity]; //新建数组,并重新赋值
initHashSeedAsNeeded(capacity); //修改hashSeed
}
// internal utilities
//初始化
void init() {
}
//与虚拟机设置有关,改变hashSeed的值
final boolean initHashSeedAsNeeded(int capacity) {
boolean currentAltHashing = hashSeed != 0;
boolean useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean switching = currentAltHashing ^ useAltHashing;
if (switching) {
hashSeed = useAltHashing
? sun.misc.Hashing.randomHashSeed(this)
: 0;
}
return switching;
}
//计算k 的 hash值
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
//根据hashcode,和表的长度,返回存放的索引
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}
//返回Map中键值对的数量
public int size() {
return size;
}
//判断集合是否为空
public boolean isEmpty() {
return size == 0;
}
//返回key ,对应的值
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
//返回null键的值
private V getForNullKey() {
if (size == 0) {
return null;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
//是否包含键为key的元素
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
//返回键为key 的entry实体,不存在返回null
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 : hash(key); //计算key的 hash值
//定位到Entry[] 数组中的存储位置,开始遍历该位置是否有链表存在
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
//判断是否有键位key 的entry实体。有就返回。
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
//向map中添加key-value 键值对,如果可以包含了key的映射,则旧的value将被替换
public V put(K key, V value) {
if (table == EMPTY_TABLE) { //table如果为空,进行初始化操作
inflateTable(threshold);
}
if (key == null) //key 为null ,放入数组的0号索引位置
return putForNullKey(value);
int hash = hash(key); //计算key的hash值
int i = indexFor(hash, table.length); //计算key在entry数组中存储的位置
//判断该位置是否已经有元素存在
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//判断key是否已经在map中存在,若存在用新的value替换掉旧的value,并返回旧的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this); //空方法
return oldValue;
}
}
modCount++; //修改次数加1
addEntry(hash, key, value, i); //将key-value转化为Entry实体,添加到Map中
return null;
}
//key = null, 对应的操作,keyweinull ,存放在entry[]中的0号位置。并用新值替换旧值
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
//私有方法,添加元素
private void putForCreate(K key, V value) {
int hash = null == key ? 0 : hash(key); //计算hash值
int i = indexFor(hash, table.length); //计算在HashMap中的存储位置
//遍历i号存储位置的链表
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
e.value = value;
return;
}
}
//创建Entry实体,存放到i号位置中
createEntry(hash, key, value, i);
}
//将m中的元素添加到HashMap中
private void putAllForCreate(Map<? extends K, ? extends V> m) {
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
putForCreate(e.getKey(), e.getValue());
}
//扩容操作
void resize(int newCapacity) {
Entry[] oldTable = table; //将table赋值给新的引用
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
//创建一个长度为newCapacity的数组
Entry[] newTable = new Entry[newCapacity];
//将table中的元素复制到newTable中
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
//更改阈值
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
//将table中的数据复制到newTable中
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) { //是否需要重新计算Hash值
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity); //计算存储的位置
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
//将m中的元素全部添加到HashMap中
public void putAll(Map<? extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0) //为空返回
return;
if (table == EMPTY_TABLE) { //是否需要执行初始化操作
inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
}
//判断是否需要扩容
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
//执行添加操作
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
//删除key ,并返回key对应的value值
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
//返回key对应的实体
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 : hash(key); //计算key的hash值
int i = indexFor(hash, table.length); //计算存储位置
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next; //链表删除
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
//删除一个指定的实体
final Entry<K,V> removeMapping(Object o) {
if (size == 0 || !(o instanceof Map.Entry))
return null;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
Object key = entry.getKey();
int hash = (key == null) ? 0 : hash(key);
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
if (e.hash == hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
//删除map
public void clear() {
modCount++;
Arrays.fill(table, null);
size = 0;
}
//判断是否包含指定value的实体
public boolean containsValue(Object value) {
if (value == null)
return containsNullValue();
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
//是否包含value== null
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
//重写克隆方法
public Object clone() {
HashMap<K,V> result = null;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
if (result.table != EMPTY_TABLE) {
result.inflateTable(Math.min(
(int) Math.min(
size * Math.min(1 / loadFactor, 4.0f),
// we have limits...
HashMap.MAXIMUM_CAPACITY),
table.length));
}
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
result.putAllForCreate(this);
return result;
}
//静态内部类 ,Entry用来存储键值对,HashMap中的Entry[]用来存储entry
static class Entry<K,V> implements Map.Entry<K,V> {
final K key; //键
V value; //值
Entry<K,V> next; //采用链表存储HashCode相同的键值对,next指向下一个entry
int hash; //entry的hash值
//构造方法, 负责初始化entry
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
public final int hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
}
public final String toString() {
return getKey() + "=" + getValue();
}
//当使用相同的key的value被覆盖时调用
void recordAccess(HashMap<K,V> m) {
}
//每移除一个entry就被调用一次
void recordRemoval(HashMap<K,V> m) {
}
}
//添加实体
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
//创建实体
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
//内部类实现Iterator接口,进行遍历操作
private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next; // next entry to return
int expectedModCount; // For fast-fail
int index; // current slot
Entry<K,V> current; // current entry
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
}
//是否有下一个元素
public final boolean hasNext() {
return next != null;
}
//返回下一个元素
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
//删除
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
private final class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
private final class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
// Subclass overrides these to alter behavior of views' iterator() method
Iterator<K> newKeyIterator() {
return new KeyIterator();
}
Iterator<V> newValueIterator() {
return new ValueIterator();
}
Iterator<Map.Entry<K,V>> newEntryIterator() {
return new EntryIterator();
}
// Views
private transient Set<Map.Entry<K,V>> entrySet = null;
//返回key组成的Set集合
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
private final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}
//返回Value组成的集合
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}
private final class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return newValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
HashMap.this.clear();
}
}
public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
}
private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}
//将对象写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
// Write out number of buckets
if (table==EMPTY_TABLE) {
s.writeInt(roundUpToPowerOf2(threshold));
} else {
s.writeInt(table.length);
}
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
if (size > 0) {
for(Map.Entry<K,V> e : entrySet0()) {
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
}
private static final long serialVersionUID = 362498820763181265L;
//从输入流中读取对象
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the threshold (ignored), loadfactor, and any hidden stuff
s.defaultReadObject();
if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new InvalidObjectException("Illegal load factor: " +
loadFactor);
}
// set other fields that need values
table = (Entry<K,V>[]) EMPTY_TABLE;
// Read in number of buckets
s.readInt(); // ignored.
// Read number of mappings
int mappings = s.readInt();
if (mappings < 0)
throw new InvalidObjectException("Illegal mappings count: " +
mappings);
// capacity chosen by number of mappings and desired load (if >= 0.25)
int capacity = (int) Math.min(
mappings * Math.min(1 / loadFactor, 4.0f),
// we have limits...
HashMap.MAXIMUM_CAPACITY);
// allocate the bucket array;
if (mappings > 0) {
inflateTable(capacity);
} else {
threshold = capacity;
}
init(); // Give subclass a chance to do its thing.
// Read the keys and values, and put the mappings in the HashMap
for (int i = 0; i < mappings; i++) {
K key = (K) s.readObject();
V value = (V) s.readObject();
putForCreate(key, value);
}
}
// These methods are used when serializing HashSets
int capacity() { return table.length; }
float loadFactor() { return loadFactor; }
}
重要方法深度解析
构造方法
HashMap() //无参构造方法
HashMap(int initialCapacity) //指定初始容量的构造方法
HashMap(int initialCapacity, float loadFactor) //指定初始容量和负载因子
HashMap(Map<? extends K,? extends V> m) //指定集合,转化为HashMap
HashMap提供了四个构造方法,构造方法中 ,依靠第三个方法来执行的,但是前三个方法都没有进行数组的初始化操作,即使调用了构造方法此时存放HaspMap中数组元素的table表长度依旧为0 。在第四个构造方法中调用了inflateTable()方法完成了table的初始化操作,并将m中的元素添加到HashMap中。
添加方法
public V put(K key, V value) {
if (table == EMPTY_TABLE) { //是否初始化
inflateTable(threshold);
}
if (key == null) //放置在0号位置
return putForNullKey(value);
int hash = hash(key); //计算hash值
int i = indexFor(hash, table.length); //计算在Entry[]中的存储位置
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i); //添加到Map中
return null;
}
在该方法中,添加键值对时,首先进行table是否初始化的判断,如果没有进行初始化(分配空间,Entry[]数组的长度)。然后进行key是否为null的判断,如果key==null ,放置在Entry[]的0号位置。计算在Entry[]数组的存储位置,判断该位置上是否已有元素,如果已经有元素存在,则遍历该Entry[]数组位置上的单链表。判断key是否存在,如果key已经存在,则用新的value值,替换点旧的value值,并将旧的value值返回。如果key不存在于HashMap中,程序继续向下执行。将key-vlaue, 生成Entry实体,添加到HashMap中的Entry[]数组中。
addEntry()
/*
* hash hash值
* key 键值
* value value值
* bucketIndex Entry[]数组中的存储索引
* /
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length); //扩容操作,将数据元素重新计算位置后放入newTable中,链表的顺序与之前的顺序相反
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
添加到方法的具体操作,在添加之前先进行容量的判断,如果当前容量达到了阈值,并且需要存储到Entry[]数组中,先进性扩容操作,空充的容量为table长度的2倍。重新计算hash值,和数组存储的位置,扩容后的链表顺序与扩容前的链表顺序相反。然后将新添加的Entry实体存放到当前Entry[]位置链表的头部。在1.8之前,新插入的元素都是放在了链表的头部位置,但是这种操作在高并发的环境下容易导致死锁,所以1.8之后,新插入的元素都放在了链表的尾部。
获取方法
public V get(Object key) {
if (key == null)
//返回table[0] 的value值
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
在get方法中,首先计算hash值,然后调用indexFor()方法得到该key在table中的存储位置,得到该位置的单链表,遍历列表找到key和指定key内容相等的Entry,返回entry.value值
删除方法
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 : hash(key);
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
删除操作,先计算指定key的hash值,然后计算出table中的存储位置,判断当前位置是否Entry实体存在,如果没有直接返回,若当前位置有Entry实体存在,则开始遍历列表。定义了三个Entry引用,分别为pre, e ,next。 在循环遍历的过程中,首先判断pre 和 e 是否相等,若相等表明,table的当前位置只有一个元素,直接将table[i] = next = null 。若形成了pre -> e -> next 的连接关系,判断e的key是否和指定的key 相等,若相等则让pre -> next ,e 失去引用。
JDK 1.8的 改变
在Jdk1.8中HashMap的实现方式做了一些改变,但是基本思想还是没有变得,只是在一些地方做了优化,下面来看一下这些改变的地方,数据结构的存储由数组+链表的方式,变化为数组+链表+红黑树的存储方式,在性能上进一步得到提升。
数据存储方式
put方法简单解析
public V put(K key, V value) {
//调用putVal()方法完成
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判断table是否初始化,否则初始化操作
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//计算存储的索引位置,如果没有元素,直接赋值
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//节点若已经存在,执行赋值操作
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//判断链表是否是红黑树
else if (p instanceof TreeNode)
//红黑树对象操作
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//为链表,
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//链表长度8,将链表转化为红黑树存储
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//key存在,直接覆盖
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//记录修改次数
++modCount;
//判断是否需要扩容
if (++size > threshold)
resize();
//空操作
afterNodeInsertion(evict);
return null;
}
下面将这个过程总结一下:
- 如果当前map中没有数据,执行resize方法
- 如果要插入的键值对要存放的位置上刚好没有元素,那么就把它封装成Node对象,并放在这个位置上。
- 如果发生碰撞,判断node的类型是红黑树还是链表:
3.1 如果为红黑树,则将K-V对插在红黑树对应的位置。
3.2 如果为链表,遍历链表:
a.如果为链表最后一个node ,则将新的node节点插入到链表尾
b.插入完,如果链表的node数量大于8,则将链表转为红黑树的操作;如果当前哈希表为空或数组长度小于64,会扩容,否则转化为红黑树。转化的过程:先遍历链表 ,将链表的节点转化为红黑树的节点;然后将链表转化为红黑树。
c.遍历链表时,如果key已存在,则直接bredk循环。 - 判断是否要扩容
- 返回
总结
HashMap采用hash算法来决定Map中key的存储,并通过hash算法来增加集合的大小。hash表里可以存储元素的位置称为桶,如果通过key计算hash值发生冲突时,那么将采用链表的形式,来存储元素。HashMap的扩容操作是一项很耗时的任务,所以如果能估算Map的容量,最好给它一个默认初始值,避免进行多次扩容。HashMap的线程是不安全的,多线程环境中推荐是ConcurrentHashMap。