What
所谓生产者消费者模式,就是一个地方无脑生产,一个地方无脑消费,通过一个中间缓冲区建立的一种模式。这样的解耦是不是很多人所向往的,而解耦的关键是如何使用中间的缓冲区。生活中的例子也有很多,像卖手机的,他们只负责生产,而我们只负责消费,中间的缓冲区便是他们的库存。再比如邮局,我们只负责写信,收信人只负责收信,中间的缓冲区便是邮局。还有,坐地铁,上班打卡。。。生活中处处充满着这个模型。
有了生产和消费,但是世界永远唯一不变的是变化,于是就产生了各种问题,生产者和消费者的量不一致,时间的把控,效率的高低,都是问题出现的因素。在美丽的大Android中很多地方也运用到了这个模型,同样的,也会出现这个问题,那么Android中是如何处理这些问题的呢?他的缓冲区是如何做的呢?
How
首先,看看Android中常用到这个模型的有哪些应用?
曾经面试的问题,Android中有几种方式可以在子线程中更新UI?
初学者看到这里,应该会自豪的说:
1,runOnUiThread
2,view.post()
3,handler
前两种方式的源码 其内部都实现了mHandler.post(action)方法,说明这三种方式其实,就是一种方式,通过Handler机制实现,关于Handler机制实现,请听下回分解。
另外还有最熟悉的Toast
其内部也是Handler:mHandler.obtainMessage(0, windowToken).sendToTarget();
Why
内部的实现都是Hander机制,其实Android消息机制的核心便是Handler机制,而实现消息机制模型就是生产者消费者模型。那么,Handler机制是如何实现的呢?
查看源码一路追踪,拨开层层迷雾,可以在MessageQueue,Message中查看得到生产者消费者模型的影子,Message就是生产出来的事物,而MessageQueue实现了生产和消费操作功能。
MeesageQueue,具体查看代码如下:
enqueueMessage()
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
next()
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
分析如下:
生产物
生产者:
enqueueMessage() 生产的对象为Message
if(beforeMessag==null||when=0||when<beforeMessag.when){
initMessage;
}else{//新消息,是入队操作
prevMsg.next=curMsg;
}
Message p=Message mMessage;
Message prev;
loop //循环取出当前链表最后一个message,赋值给prev;
->prev =p;
->p=p.next;
//赋值给Next
msg.next=p=null;
prev.next =msg;
消费者:
next()
loop
->Message prevMsg=null; Message msg=mMessages;
//将下一个Msg上移,for loop 将剩下来的msg一一往前移动
-> if(prevMsg!=null) prevMsg.next=msg.next;
-> else mMessages=msg.next;// 主链表上移一个msg
-> return msg;
1,enqueueMessage() 为生产线程执行,入队一个Message ,return true。
2,next() 为消费线程执行,出队:在Looper.loop()中不断取, 而在next()中也是loop 只要取到了便return msg 否则wait。next加了一个同步锁,保证了与enqueue的互斥。enqueue 同样也添加了同步锁,从而保证了与next的互斥:将message添加到Message链表中去,判断,如果出现阻塞了,需要进行唤醒操作。妥妥的生产者消费者模型。
总结
生产者和消费者的精髓是:
不同线程操作同一对象的不同方法,但是要保持其互斥,也不能出现死锁的情况,条件满足就通知其他等待的线程 ,条件不满足,就休眠等待。
在Thread-1的生产者只负责生产,在Thread-2的消费者则只负责消费,操作互斥,当生产者达到上限则进行等待,反之消费者达到上限所有线程就等待。
【引用】
1,模式解释灵感:戳这里看大神的解释
2,MessageQueue源码解析
3,Toast源码解析,艾玛,和我看的顺序一样一样的