孟德尔随机化法(Mendelian randomization method)

写在前面:知识真是越看越多,聪明的人类总能想出各种办法来寻找这世界万物中的各种联系。文献中读到Mendelian randomization method and  a Mendelian randomization-Egger sensitivity analysis,真是焦头烂额,查了查资料来做笔记了。这篇笔记的基础来自一篇中文文献,《孟德尔随机化法在因果推断中的应用》。

英文来源:http://www.mendelianrandomization.com/index.php


孟德尔随机化(Mendelian Randomization,MR)研究设计,遵循“亲代等位基因随机分配给子代”的孟德尔遗传规律,如果基因型决定表型,基因型通过表型而与疾病发生关联,因此可以使用基因型作为工具变量来推断表型与疾病之间的关联。关联zy=关联zx×关联xy,见图。

Greenland对工具变量在流行病学混杂因素控制方面的应用做了详细阐述:

①工具变量z与混杂因素u无关联;

②工具变量z与暴露因素x有关联;

③工具变量z与结局变量Y无关联,z只能通过变量X与Y发生关联

上述方程的使用必须满足条件:

①变量x与Y之间的关联一定会受到潜在混杂因素U的影响,但工具变量z与变量x以及z与变量Y之间无潜在混杂因素影响;

②变量x与结局Y之间的关联无法直接观察获得,因为无法直接测量变量X,但是z是可测量的,并且z与x直接的关联是已知的或者可测量的,并独立于其他因素而存在。

这些对于工具变量的限制条件也使得正确选择合适的工具变量成为关联研究的难点。


MR设计策略

①一阶段MR(One stage MR):

②独立样本MR(One-sample MR):该方法利用单一研究样本,通过使用2阶段最小二乘法回归模型(2-stage least—squares regression,2SLS),定量估计暴露因素x与Y之间的关联效应大小。第一步:建立G—X回归模型,获得暴露因素预测值(predicted value,P);第二步:构建P—Y的回归模型,即获得暴露因素预测值P和结局变量Y之间的回归方程。

由于该方法局限于单个样本,把握度较小,工具变量的选择也比较局限,容易受到潜在混杂因素的影响。2SLS的分析方法在Stata软件中可以使用“ivregress”(StataCorp)、在R软件中使用“ivpack”(R Foundation)来实现。

③两样本MR(Two-sample MR):两样本MR的设计策略是建立在G—X和G—Y的关联研究人群来自相同人群的两个独立样本(如GWAS与暴露,GWAS与结局的关联数据n9。),要求两样本具有相似的年龄、性别和种族分布特征,因为样本量较大,该方法可以获得更大的把握度。目前,两样本MR因为全球大量GWAS合作组的公共数据而被广泛使用。

④双向MR(Bidirectional MR):又称为互为MR(Reciprocal MR)

此方法在解决因果网络方向的问题上将会有很大用途,但是在分析未知生物学效应的两个变量时,要防止被双向MR的结果误导。

⑤两阶段MR(Two-step MR):与两样本MR不同的是,两阶段MR需要使用遗传工具变量来评价因果关联的可能中间变量M(Mediation),来探讨环境暴露因素(E)是否通过表观遗传指标(M)而导致疾病(O)改变,见图

第一阶段,遗传工具变量G1独立于混杂因素,指代暴露因素E与结局O之问的关联,并且必须经过中间变量M才能实现;

第二阶段,另一独立遗传工具变量G2作为中间变量M的指代工具,分析中间变量M与结局0之间的关联

比如BMI通过血压来间接影响冠心病的发生。目前此方法已被应用于表观遗传流行病学(Epigenetic Epidemiology)研究,Binder和Michels使用母亲MTHFR C677T,A1298C两位点作为工具变量,发现7个CpG位置参与了红细胞叶酸与甲基化改变之间的关联。Dekkers等陋63使用全基因组甲基化数据发现,免疫细胞差异甲基化结果是由个体内部血脂水平(TG,LDL-C,HDL-C)变化所导致,反之则不亦然。此方法必须满足E—M和E—O之间的关联呈线性以及同质性的假设前提,并且已被延伸成为分析复杂因果网络关系的基础,如网络MR设计(Network MR)。

⑥基因一暴露交互作用MR(Gene-exposure interactions)interactions):MR研究设计还可以用于探讨基因一暴露因素在疾病发生中的交互作用现象,同时要求基因与结局的关联必须取决于暴露因素的状态。这种方法可以区分基因直接作用于结局,还是基因通过暴露因素而作用于结局。


MR研究可靠性评价

1.敏感度分析(sensitivity analysis)

2.MR-Egger回归分析:以使用MR—Egger回归分析的方法来评价基因多效性带来的偏倚,MR-Egger回归直线的斜率可以估计定向多效性(directional pleiotropy)的大小。


Beavis效应:基于GWAS数据的MR研究可能会高估了遗传和暴露之间的关联,亦被称之为“胜利者的诅咒(the winner’s curse)


https://mp.weixin.qq.com/s/OkuUFZWGbkDj2yify5ULQA

这篇有例子有实战,不错:https://www.jianshu.com/p/253309a571aa


Technical Report | 29 October 2018

Distinguishing genetic correlation from causation across 52 diseases and complex traits

This study presents a new latent causal variable (LCV) model that distinguishes between genetic correlation and…show more

Luke J. O’Connor & Alkes L.  Price

号称比孟德尔随机化还好的model,避免了假阳性,可以看看

附上软件网址:https://github.com/lukejoconnor/LCV

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容

  • 有些人,在此之前和在此之后,你们也聚过;有些事,在此之前和在此之后,你们也做过。但是无论如何,就是没有那一次心扉全...
    逗我呢_d88a阅读 124评论 0 0
  • 你也可以指定原始采样周期的特定重采样倍数对数据进行重采样。例如,若工作区采样周期为15秒,而在这一拟合中你想要一分...
    橡果阅读 322评论 0 0
  • 现在的我写着这些文字的时候,估计一定被17岁的我深深的鄙视,哦不是深深,而是扫一眼罢了。20160328 17岁的...
    雪方明阅读 270评论 0 0
  • 安装完Android Studio后,android studio工具的xml可视化工具会提示这个错误。 使用以下...
    徐不同阅读 297评论 0 3