深入分析Volatile的实现原理

1、引言

在多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”。可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。它在某些情况下比synchronized的开销更小,下面我们将深入分析Voliate的实现原理。

2、Volatile定义

java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁更加方便。如果一个字段被声明成volatile,java线程内存模型确保所有线程看到这个变量的值是一致的。volatile可以保证线程可见性且提供了一定的有序性,但是无法保证原子性。在JVM底层volatile是采用“内存屏障”来实现的。

即一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

  • (1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。保证可见性、不保证原子性。
  • (2)禁止进行指令重排序。

3、为什么要使用Volatile

Volatile变量修饰符如果使用恰当的话,它比synchronized的使用和执行成本会更低,因为它不会引起线程上下文的切换和调度。

4、Voliate保证可见性

先看一段代码,假如线程1先执行,线程2后执行:

//线程1
boolean stop = false;
while(!stop){
    doSomething();
}

//线程2
stop = true;

这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。下面解释一下这段代码为何有可能导致无法中断线程。

前面文章 Java内存模型 中我们说过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。

但是用volatile修饰之后就变得不一样了:

  • 第一:使用volatile关键字会强制将修改的值立即写入主存;
  • 第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);
  • 第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。

那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。那么线程1读取到的就是最新的正确的值。

5、volatile不能保证原子性

Volatile不保证对变量的操作是原子性,下面看一个例子:

public class Test {
    public volatile int inc = 0;

    public void increase() {
        inc++;
    }

    public static void main(String[] args) {
        final Test test = new Test();
        for(int i=0;i<10;i++){
            new Thread(){
                public void run() {
                    for(int j=0;j<1000;j++)
                        test.increase();
                };
            }.start();
        }

        while(Thread.activeCount()>1)  //保证前面的线程都执行完
            Thread.yield();
        System.out.println(test.inc);
    }
}
``

上面程序的输出有人认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。可能有人就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。


这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:


- (1)假如某个时刻变量inc的值为10,线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;

- (2) 然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,``所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,``所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。

- (3)然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。

- (4) 那么两个线程分别进行了一次自增操作后,inc只增加了1。


解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。


根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。把上面的代码改成以下任何一种都可以达到效果:

##6、volatile一定程度保证有序性

在前面提到volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。volatile关键字禁止指令重排序有两层意思:

- 当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;

- 在进行指令优化时,不能将在对volatile变量访问的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。



可能上面说的比较绕,举个简单的例子:



//x、y为非volatile变量
//flag为volatile变量

x = 2; //语句1
y = 0; //语句2
flag = true; //语句3
x = 4; //语句4
y = -1; //语句5




由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。并且volatile关键字能保证,执行到语句3时,语句1和语句2必定是执行完毕了的,且语句1和语句2的执行结果对语句3、语句4、语句5是可见的。那么我们回到前面举的一个例子:



//线程1:
context = loadContext(); //语句1
inited = true; //语句2

//线程2:
while(!inited ){
sleep()
}
doSomethingwithconfig(context);


前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么就可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。



##7、volatile的实现机制和原理
###7.1 实现机制
前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。在x86处理器下通过工具获取JIT编译器生成的汇编指令来看看对Volatile进行写操作CPU会做什么事情。


Java代码: instance = new Singleton();//instance是volatile变量
汇编代码: 0x01a3de1d: movb 0x0,0x1104800(%esi);0x01a3de24: lock addl0x0,(%esp);


观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令。lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:


- 它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
- 它会强制将对缓存的修改操作立即写入主内存;
- 如果是写操作,它会导致其他CPU中对应的缓存行无效。



###7.2 实现原理
#### 7.2.1 可见性
处理器为了提高处理速度,不直接和内存进行通讯,而是将系统内存的数据独到内部缓存后再进行操作,但操作完后不知什么时候会写到内存。

如果对声明了volatile变量进行写操作时,JVM会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写会到系统内存。这一步确保了如果有其他线程对声明了volatile变量进行修改,则立即更新主内存中数据。

但这时候其他处理器的缓存还是旧的,所以在多处理器环境下,为了保证各个处理器缓存一致,每个处理会通过嗅探在总线上传播的数据来检查 自己的缓存是否过期,当处理器发现自己缓存行对应的内存地址被修改了,就会将当前处理器的缓存行设置成无效状态,当处理器要对这个数据进行修改操作时,会强制重新从系统内存把数据读到处理器缓存里。 这一步确保了其他线程获得的声明了volatile变量都是从主内存中获取最新的。



#### 7.2.2 有序性

Lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成。


##8、使用volatile关键字的场景
synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件:

- 对变量的写操作不依赖于当前值
- 该变量没有包含在具有其他变量的不变式中


实际上,这些条件表明,可以被写入volatile变量的这些有效值独立于任何程序的状态,包括变量的当前状态。即实际就是上面的2个条件需要保证操作是原子性操作,才能保证使用volatile关键字的程序在并发时能够正确执行。下面列举Java中使用volatile的几个场景。

### 8.1 状态标记量

volatile boolean inited = false;
//线程1:
context = loadContext();
inited = true;

//线程2:
while(!inited ){
sleep();
}
doSomethingwithconfig(context);


### 8.2 double check(单例模式)

class Singleton{
private volatile static Singleton instance = null;

private Singleton() {

}

public static Singleton getInstance() {
    if(instance == null) {
        synchronized (Singleton.class) {
            if(instance == null)
                instance = new Singleton();
        }
    }
    return instance;
}

}



这里为什么要使用volatile修饰instance?主要在于instance = new Singleton()这句,这并非是一个原子操作,事实上在JVM中这句话大概做了下面3件事情:


- 1.给instance分配内存
- 2.调用Singleton的构造函数来初始化成员变量
- 3.将instance对象指向分配的内存空间(执行完这步instance就为非null了)。

但是在JVM的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在3执行完毕、2未执行之前,被线程二抢占了,这时instance已经是非null了(但却没有初始化),所以线程二会直接返回instance,然后使用,然后顺理成章地报错。



##9、Volatile的使用优化

在使用Volatile变量时,用一种追加字节的方式来优化队列出队和入队的性能。追加字节能优化性能?这种方式看起来很神奇,但如果深入理解处理器架构就能理解其中的奥秘。让我们先来看看LinkedTransferQueue这个类,它使用一个内部类类型来定义队列的头队列(Head)和尾节点(tail),而这个内部类PaddedAtomicReference相对于父类AtomicReference只做了一件事情,就将共享变量追加到64字节。我们可以来计算下,一个对象的引用占4个字节,它追加了15个变量共占60个字节,再加上父类的Value变量,一共64个字节。


/** head of the queue */
private transient final PaddedAtomicReference<QNode> head;

/** tail of the queue */
private transient final PaddedAtomicReference<QNode> tail;

static final class PaddedAtomicReference <T> extends AtomicReference <T> {

// enough padding for 64bytes with 4byte refs
Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;

PaddedAtomicReference(T r) {
    super(r);
}

}

public class AtomicReference <V> implements java.io.Serializable {

private volatile V value;

//省略其他代码
}



为什么追加64字节能够提高并发编程的效率呢? 因为对于英特尔酷睿i7,酷睿, Atom和NetBurst, Core Solo和Pentium M处理器的L1,L2或L3缓存的高速缓存行是64个字节宽,不支持部分填充缓存行,这意味着如果队列的头节点和尾节点都不足64字节的话,处理器会将它们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头尾节点,当一个处理器试图修改头接点时会将整个缓存行锁定,那么在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的入队和出队操作是需要不停修改头接点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。Doug lea使用追加到64字节的方式来填满高速缓冲区的缓存行,避免头接点和尾节点加载到同一个缓存行,使得头尾节点在修改时不会互相锁定。

那么是不是在使用Volatile变量时都应该追加到64字节呢?不是的。在两种场景下不应该使用这种方式。

- 缓存行非64字节宽的处理器,如P6系列和奔腾处理器,它们的L1和L2高速缓存行是32个字节宽。

- 共享变量不会被频繁的写。因为使用追加字节的方式需要处理器读取更多的字节到高速缓冲区,这本身就会带来一定的性能消耗,共享变量如果不被频繁写的话,锁的几率也非常小,就没必要通过追加字节的方式来避免相互锁定。


















`








##原文
[https://blog.csdn.net/eff666/article/details/67640648](https://blog.csdn.net/eff666/article/details/67640648)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,681评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,710评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,623评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,202评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,232评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,368评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,795评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,461评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,647评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,476评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,525评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,226评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,785评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,857评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,090评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,647评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,215评论 2 341

推荐阅读更多精彩内容