知识图谱概览

第一部分 世界是由粒子组成的

知识图谱的基本粒子

1.什么是知识图谱

简单的理解就是描述知识,标识知识

2.知识图谱包括的内容

知识表示、知识抽取、知识存储、知识融合、知识推理、知识众包、语义搜索、知识问答等内容

3.知识图谱的构成

知识图谱由一条一条知识组成
每条知识标识为一个SPO三元组(Subject-Predicate-Object)
Subject : 主语
Predicate: 谓词
Object :宾语
举个例子:猫是动物
猫:主语
是:谓词 用来描述或判定客体性质、特征或者客体之间关系的词项
动物:宾语

4.怎么描述一个三元组——即怎么描述一条知识

RDF(Resource Description Framework),资源描述框架,是W3C制定的,用于描述实体/资源的标准数据模型
RDF图中一共有三种类型,International Resource Identifiers(IRIs),blank nodes 和 literals

  • Subject可以是IRI或blank node。
  • Predicate是IRI。
  • Object三种类型都可以。

IRI:我们可以看做是URI或者URL的泛化和推广,它在整个网络或者图中唯一定义了一个实体/资源,和我们的身份证号类似。

blank node:有争议的存在,先不做介绍

literal:是字面量,我们可以把它看做是带有数据类型的纯文本,假如上面提到猫的名字叫小花,那么小花可以表示为"xiaohua"^^xsd:string

描述一下猫的名字是小花这个三元组


猫的名字是小花
  • 猫是一个唯一标识实体很容易理解
  • kg:name是RDF中定义的一些perfix文件中的一个
    定义格式如下:
@perfix kg:<www.kg.com/ontology/>

kg:name相当于www.kg.com/ontology/name

  • 小花是一个字面量

这样经过RDF的规则统一,梳理一下,就将一个句子(一条知识)做了充分的定义和表示

第二部分 粒子该怎么组合

语义网络、知识图谱

第一部分介绍的只是某一条知识,太简单了,也达不到我们的要求,将一条一条的知识组合在一起,会组成一个庞大的网络,才会有意义。可以理解为,第一部分介绍的东西是造句,接下来要将句子组合在一起,做作文

1.语义网络 Semantic Network

语义网络是一种知识的表达形式,用一幅图表示一下
语义网络

这样的一个语义网络可以表示一些知识,但是优点和缺点都很明显

优点

  • 1.容易理解
  • 2.知识容易聚类

缺点

  • 1.节点和边的值没有标准,完全是由用户自己定义。
  • 2.多源数据融合比较困难,因为没有标准。
  • 3.无法区分概念节点(class)和对象(object)节点。
  • 4.无法对节点和边的标签进行定义。

RDF的标准解决了缺点1和2,制定了一些标准,但是对于3和4还没有解决

看一个问题引出问题3,如何用RDF的规则表示“猫是哺乳动物”这句话
RDF中可以表示为

猫  rdf:type 哺乳动物

语言文化博大精深,“猫是哺乳动物”这句话有两成含义,在语境A中“猫”可以指一个特定的实体,即object,但是在语境B中,猫可以指一个类型即class
为了解决这个问题,即问题3和4,W3C提出了RDFS和OWL两个标准
下面举几个例子:以RDFS为例,

  • 声明一个类
哺乳动物 rdf:type rdfs:class
  • 声明一个子类
猫 rdf:type rdfs:Class
猫 rdfs:subClassOf 哺乳动物
  • 声明一个实例
猫 rdf:type 哺乳动物

rdf:type可以缩写为a,即猫 a 哺乳动物

2.知识图谱

对于上面的语义网络,虽然RDF可以描述边节点之间的关系,但是大家发现一个最可怕的问题吗,这个语义网络没有边界,可以随便扩展,这就导致无法描述
知识图谱和语义网络的区别在于此,知识图谱只包含两种类型,即资源和字面量,所有节点的边最终都是一个字面量,类似于树的叶子节点,不会再有出度,如下面的图


罗纳尔多知识图谱

里面所有的边界最后都是一个字面量,这样就可以使所有的数据量化,并可表达

至此,大致的就可以了解知识图谱是什么东西

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容