教程很多,随便列两个,强烈推荐学起来,没有python基础也可以搞定
参考1
参考2
Snakemake搭建生信分析流程-简介
snakemake使用笔记
[转]snakemake--我最喜欢的流程管理工具
主要需要一个snakefile和包含参数信息的config.yaml文件,所以需要编辑这两个文件,运行的时候只要把它们丢到数据所在的目录,使用以下代码运行就行了。
#!/bin/bash
#SBATCH --job-name=sbatch_rna_flow
#SBATCH --time=40:00:00
#SBATCH --cpus-per-task=20
#SBATCH --mem=60g
module load snakemake singularity
ml python/3.6
snakemake -j 3 --use-singularity
运行前建议使用
snakemake -np
去伪运行一下看看有没有错误在正式运行,这个习惯要保持。
如果因为运行出错导致lock可以用snakemake --unlock 解决
我使用的是SLURM递交系统,其他的可以用conda进行管理,老习惯,直接上代码,希望能够有所启发
PE (paired end) RNA-seq
snakefile
shell.executable("/bin/bash")
configfile: "./config.yaml"
(SAMPLES,READS,) = glob_wildcards("fastq/{sample}_{read}.fastq.gz")
READS=["1","2"]
rule all:
input:
"4_final_counts/final_counts.txt"
rule fastqc:
input:
"fastq/{sample}_1.fastq.gz",
"fastq/{sample}_2.fastq.gz"
output:
"1_initial_qc/{sample}/{sample}_1_fastqc.zip",
"1_initial_qc/{sample}/{sample}_2_fastqc.zip",
"1_initial_qc/{sample}/{sample}_1_fastqc.html",
"1_initial_qc/{sample}/{sample}_2_fastqc.html"
log:
"log/{sample}_fastqc"
shell:
"""
ml fastqc
fastqc -o 1_initial_qc/{wildcards.sample} --noextract {input[0]} {input[1]} 2> {log}
"""
rule fastp:
input:
fwd="fastq/{sample}_1.fastq.gz",
rev="fastq/{sample}_2.fastq.gz"
output:
fwd="2_fastp_output/{sample}_1_good.fq.gz",
rev="2_fastp_output/{sample}_2_good.fq.gz",
html="2_fastp_output/{sample}.html",
json="2_fastp_output/{sample}.json"
log:
"log/{sample}_fastp"
shell:
"""
ml fastp
fastp -w 10 -h {output[html]} -j {output[json]} -i {input[fwd]} -I {input[rev]} -o {output[fwd]} -O {output[rev]} 2> {log}
"""
rule HISAT2:
input:
"2_fastp_output/{sample}_1_good.fq.gz",
"2_fastp_output/{sample}_2_good.fq.gz"
output:
"3_HISAT2_aligned/{sample}.bam",
"3_HISAT2_aligned/{sample}.bam.bai"
params: "3_HISAT2_aligned/{sample}.bam"
log:
"log/{sample}_HISAT2"
shell:
"""
ml hisat
ml samtools
ml sambamba
hisat2 -p {config[threads]} -x {config[index]} \
-1 {input[0]} -2 {input[1]} \
--no-mixed --no-discordant | sambamba view -t {config[threads]} --sam-input --format=bam /dev/stdin | \
samtools sort -@ {config[threads]} > {params}
samtools index -@ {config[threads]} {params}
"""
rule featureCounts:
input:
expand("3_HISAT2_aligned/{sample}.bam", sample=SAMPLES)
output:
"4_final_counts/final_counts.txt",
"4_final_counts/final_counts.txt.summary"
log:
"log/featurecounts.log"
shell:
"""
ml subread
ls 3_HISAT2_aligned/*bam | xargs featureCounts -a {config[gtf]} -o {output[0]} \
-s {config[strand]} -T {config[threads]} -t exon -g gene_id 2> {log}
"""
config.yaml
gtf: "/gtf/gencode.v33.annotation.gtf"
index: "/hg38/grch38_p13/genome"
threads: 5
###featurecounts strand information 1 notrand 2 trand 0 unknown,depend on the library kit
strand: 2
SE RNAseq
snakefile
shell.executable("/bin/bash")
configfile: "./config.yaml"
(SAMPLES,) = glob_wildcards("fastq/{sample}.fastq.gz")
rule all:
input:
"4_final_counts/final_counts.txt"
rule fastqc:
input:
"fastq/{sample}.fastq.gz",
output:
"1_initial_qc/{sample}/{sample}.fastqc.zip",
"1_initial_qc/{sample}/{sample}.fastqc.html",
log:
"log/{sample}_fastqc"
shell:
"""
ml fastqc
fastqc -o 1_initial_qc/{wildcards.sample} --noextract {input[0]} 2> {log}
"""
rule fastp:
input:
"fastq/{sample}.fastq.gz"
output:
fwd="2_fastp_output/{sample}.good.fq.gz",
html="2_fastp_output/{sample}.html",
json="2_fastp_output/{sample}.json"
log:
"log/{sample}_fastp"
shell:
"""
ml fastp
fastp -w 10 -h {output[html]} -j {output[json]} -i {input[0]} -o {output[fwd]} 2> {log}
"""
rule HISAT2:
input:
"2_fastp_output/{sample}.good.fq.gz",
output:
"3_HISAT2_aligned/{sample}.bam",
"3_HISAT2_aligned/{sample}.bam.bai"
params: "3_HISAT2_aligned/{sample}.bam"
log:
"log/{sample}_HISAT2"
shell:
"""
ml hisat
ml samtools
ml sambamba
hisat2 -p {config[threads]} -x {config[index]} \
-U {input[0]} \
--no-mixed --no-discordant | sambamba view -t {config[threads]} --sam-input --format=bam /dev/stdin | \
samtools sort -@ {config[threads]} > {params}
samtools index -@ {config[threads]} {params}
"""
rule featureCounts:
input:
expand("3_HISAT2_aligned/{sample}.bam", sample=SAMPLES)
output:
"4_final_counts/final_counts.txt",
"4_final_counts/final_counts.txt.summary"
log:
"log/featurecounts.log"
shell:
"""
ml subread
ls 3_HISAT2_aligned/*bam | xargs featureCounts -a {config[gtf]} -o {output[0]} \
-s {config[strand]} -T {config[threads]} -t exon -g gene_id 2> {log}
"""
config.yaml
gtf: "/gtf/gencode.vM23.annotation.gtf"
index: "/grcm38/genome"
threads: 3
###featurecounts strand information 1 notrand 2 trand 0 unknown,depend on the library kit
strand: 0
轻松加easy,看个电影来收数据,注意控制好线程数否则内存爆表。