源码来自jdk1.8
- 实现了Map<K, V>接口
- 可以有null键和null值(于此相对,HashTable不允许null,且是同步的)
- get和put操作O(1)
- 性能受initial capacity 和 load factor影响
- 不同步,解决办法:
This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be "wrapped" using the Collections.synchronizedMap method.
Map m = Collections.synchronizedMap(new HashMap(...));
- iterator fast fail
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/* ---------------- Fields -------------- */
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;
/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*/
transient Set<Map.Entry<K,V>> entrySet;
/**
* The number of key-value mappings contained in this map.
*/
transient int size;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
transient int modCount;
/**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;
// ....
}
常量中比较重要的几点
- Capacity一直是2的幂,也就是下面table数组的长度
- 默认装载因子0.75
- bin由链表转化为红黑树的临界值是8
属性中比较重要的
- Node<K,V>[] table 是map存储键值对的对象,每个键值对就是一个实现了Entry接口的Node,table中的每个元素即是一个键值对Node,也是这个键值对链表的头节点,通过hash得到相同坐标的键值对通过链表链接在头节点后面
- threshold resize()的临界值,也就是(Capacity*loadfactor)
- loadFactor 装载因子
- 这里要注意的是size指的是所有键值对的数量,而与table数组长度无关
Node<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
单个节点中要注意的是,节点的hash值和key都是final修饰的,而value和下一个节点next是可以更改的。
还有就是这个Node是链表结构的,所以转换为红黑树以后,要相应的换成树节点(也是Node类型的子类),后文会提到。
put
理解了put函数,也就理解了HashMap底层是如何存放键值对(Node)的.
put函数的流程大致如下:
- 计算key的hash值,这里不仅是调用key.hashCode()函数,还有进一步的计算。
- 通过hash值进一步计算键值对在数组中的位置,相同hash值的键值对在数组中的坐标相同,也就是说相同hash值的键值对处于同一个bin中,他们以链表的形式存放在数组的这个坐标下。
- 如果是第一个就直接放,如果碰撞了就链接到链表后面去。
- 如果链表>=TREEIFY_THRESHOLD,就将链表转换为红黑树(这样查找的时间由O(n)变为O(log(n)))
- 如果节点存在就更新值,返回旧值
- 如果map的size>= threshold,那么就要resize()
public V put(K key, V value) {
// 这里计算了hash值
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果map为空,那么通过resize初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 如果这个bin为空,那么就把这个键值对放到这个index的位置上,成为这个bin的第一个元素
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 如果这个位置已经有其它元素了,那就依次比较,存在就更新,不存在就添加
else {
Node<K,V> e; K k;
// p用来保存这个位置的第一个元素,如果正好就是这个元素,那么就用e来返回找到的元素,
// 如果不是就分链表和红黑树继续找,同样也是找到就用e返回,找不到就添加
// 这里比较的时候先比较了hash值,然后再比较key是否相等,之所以要比较hash值是
// 因为在定位到这个位置的时候只使用了hash值的低位(n - 1)& hash,这个的分析见get
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 红黑树的情况,添加或者返回找到的节点
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 链表的情况,添加或者返回找到的节点
else {
for (int binCount = 0; ; ++binCount) {
// 到达链表结尾,没有找到,那么插入新节点
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 如果链表过长,那么转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 在链表中找到了相同key的节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 如果e不为空,就是找到了节点,那么更新节点的value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
// 增加修改次数
++modCount;
// 如果大于临界值,扩大
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
get
get与put思路基本一致,只是缺少了添加(更新)这个步骤:
- key->hashCode()->hash->index
- 比较节点
a) 第一个节点
b) 链表查找
c) 红黑树查找
public V get(Object key) {
Node<K,V> e;
// 这里计算hash值
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 如果table不为空,且index位置有节点
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 检查第一个节点
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 如果第一个节点不是,且后面还有节点
if ((e = first.next) != null) {
// 红黑树的情况
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 链表的情况
do {
// 找到就返回
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
hash
计算key的hash值HashMap的关键点,hash函数关系着能否均匀的将键值对散列开,如果散列效果不好,就会发生很多碰撞,影响查找添加的效率,如果计算太过复杂,同样也会影响效率,这里给出jdk1.8的实现
static final int hash(Object key) {
int h;
// 保持hashCode的高16位,将低16位与高16位异或
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
resize
resize函数用来申请table数组,所以会在放进第一个键值对初始化和达到threshold进行扩容两种情况下使用。
函数总体也分为上下两个部分,上半部分得到新的table的capacity和threshold值,分配数组,下半部分用于在扩容情况下,将所有的键值对重新计算得到坐标,也就是个再散列的过程。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 到这里为止,函数只做了两件事,就是确定新的table的capacity和map的新的threshold
threshold = newThr;
// 这里申请新的table
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 从这里开始,对原来所有的键值对重新散列,hash值是存在节点里的,不需要重新计算
if (oldTab != null) {
// 按坐标遍历table,每次处理一个bin
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
// 如果这个bin有节点
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 如果只有一个节点,那么重新散列,其实也就是由于capacity扩大,计算index时多使用了hash值中的一个高位
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果这个bin是红黑树结构
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
// 如果这个bin是链表结构
else { // preserve order
// lo其实也就是原来的index位置
Node<K,V> loHead = null, loTail = null;
// hi就是扩容后与lo相对的新的index,坐标相差了原来的capacity
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 这里的到的是hash值中新加入计算的高位,根据这位是0或1将原来的链表拆分成两个链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将链表(高位为0)放到原来的index位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 将链表(高位为1)放到新的index位置
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
iterator
HashMap中的iterator分为key,value,entry三种,基本实现都是一样的,唯一需要关注的是,由于是按照table来遍历的,所以顺序会看起来是无序的。