volatile 和原子类的异同,画个图理解一下

image.png
  • volatile和原子类
  • 原子类和 volatile 的使用场景
  • 总结

volatile和原子类

我们首先看一个案例。如图所示,我们有两个线程。

volatile 和原子类的异同,画个图理解一下

在图中左上角可以看出,有一个公共的 boolean flag 标记位,最开始赋值为 true。

然后线程 2 会进入一个 while 循环,并且根据这个 flag 也就是标记位的值来决定是否继续执行或着退出。

最开始由于 flag 的值是 true,所以首先会在这里执行一定时期的循环。然后假设在某一时刻,线程 1 把这个 flag 的值改为 false 了,它所希望的是,线程 2 看到这个变化后停止运行。

但是这样做其实是有风险的,线程 2 可能并不能立刻停下来,也有可能过一段时间才会停止,甚至在最极端的情况下可能永远都不会停止。

为了理解发生这种情况的原因,我们首先来看一下 CPU 的内存结构,这里是一个双核的 CPU 的简单示意图:

volatile 和原子类的异同,画个图理解一下

可以看出,线程 1 和线程 2 分别在不同的 CPU 核心上运行,每一个核心都有自己的本地内存,并且在下方也有它们共享的内存。

最开始它们都可以读取到 flag 为 true ,不过当线程 1 这个值改为 false 之后,线程 2 并不能及时看到这次修改,因为线程 2 不能直接访问线程 1 的本地内存,这样的问题就是一个非常典型的可见性问题。

[图片上传失败...(image-ba7a99-1612505968523)]

要想解决这个问题,我们只需要在变量的前面加上 volatile 关键字修饰,只要我们加上这个关键字,那么每一次变量被修改的时候,其他线程对此都可见,这样一旦线程 1 改变了这个值,那么线程 2 就可以立刻看到,因此就可以退出 while 循环了。

volatile 和原子类的异同,画个图理解一下

之所以加了关键字之后就就可以让它拥有可见性,原因在于有了这个关键字之后,线程 1 的更改会被 flush 到共享内存中,然后又会被 refresh 到线程 2 的本地内存中,这样线程 2 就能感受到这个变化了,所以 volatile 这个关键字最主要是用来解决可见性问题的,可以一定程度上保证线程安全。

现在让我们回顾一下很熟悉的多线程同时进行 value++ 的场景,如图所示:

[图片上传失败...(image-e4bd23-1612505968523)]

如果它被初始化为每个线程都加 1000 次,最终的结果很可能不是 2000。由于 value++ 不是原子的,所以在多线程的情况下,会出现线程安全问题。但是如果我们在这里使用 volatile 关键字,能不能解决问题呢?

volatile 和原子类的异同,画个图理解一下

很遗憾,即便使用了 volatile 也是不能保证线程安全的,因为这里的问题不单单是可见性问题,还包含原子性问题。

我们有多种办法可以解决这里的问题,第 1 种是使用synchronized 关键字,如图所示:

volatile 和原子类的异同,画个图理解一下

这样一来,两个线程就不能同时去更改 value 的数值,保证了 value++ 语句的原子性,并且 synchronized 同样保证了可见性,也就是说,当第 1 个线程修改了 value 值之后,第 2 个线程可以立刻看见本次修改的结果。

解决这个问题的第 2 个方法,就是使用我们的原子类,如图所示:

image.png

比如用一个 AtomicInteger,然后每个线程都调用它的 incrementAndGet 方法。

在利用了原子变量之后就无需加锁,我们可以使用它的 incrementAndGet 方法,这个操作底层由 CPU 指令保证原子性,所以即便是多个线程同时运行,也不会发生线程安全问题。

原子类和 volatile 的使用场景

我们可以看出,volatile 和原子类的使用场景是不一样的,如果我们有一个可见性问题,那么可以使用 volatile 关键字,但如果我们的问题是一个组合操作,需要用同步来解决原子性问题的话,那么可以使用原子变量,而不能使用 volatile 关键字。

通常情况下,volatile 可以用来修饰 boolean 类型的标记位,因为对于标记位来讲,直接的赋值操作本身就是具备原子性的,再加上 volatile 保证了可见性,那么就是线程安全的了。

总结

对于会被多个线程同时操作的计数器 Counter 的场景,这种场景的一个典型特点就是,它不仅仅是一个简单的赋值操作,而是需要先读取当前的值,然后在此基础上进行一定的修改,再把它给赋值回去。这样一来,我们的 volatile 就不足以保证这种情况的线程安全了。我们需要使用原子类来保证线程安全。

来源:https://www.tuicool.com/articles/fUBFj2j

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,711评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,932评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,770评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,799评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,697评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,069评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,535评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,200评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,353评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,290评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,331评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,020评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,610评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,694评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,927评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,330评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,904评论 2 341

推荐阅读更多精彩内容