讲解:INF 552、MFCCs、c/c++,Java、PythonProcessing|Proc

Homework 5 INF 552, Instructor: Mohammad Reza Rajati1. Multi-class and Multi-Label Classification Using Support Vector Machines(a) Download the Anuran Calls (MFCCs) Data Set from: https://archive.ics.uci.edu/ml/datasets/Anuran+Calls+%28MFCCs%29. Choose 70% of the datarandomly as the training set.(b) Each instance has three labels: Families, Genus, and Species. Each of the labelshas multiple classes. We wish to solve a multi-class and multi-label problem.One of the most important approaches to multi-class classification is to train aclassifier for each label. We first try this approach:i. Research exact match and hamming score/ loss methods for evaluating multilabelclassification and use them in evaluating the classifiers in this problem.ii. Train a SVM for each of the labels, using Gaussian kernels and one versusall classifiers. Determine the weight of the SVM penalty and the width ofthe Gaussian Kernel using 10 fold cross validation.1 You are welcome to tryto solve the problem with both standardized 2 and raw attributes and reportthe results.iii. Repeat 1(b)ii with L1-penalized SVMs.3 Remember to standardize4the attributes.Determine the weight of the SVM penalty using 10 fold cross validation.iv. Repeat 1(b)iii by using SMOTE or any other method you know to remedyclass imbalance. Report your conclusions about the classifiers you trained.v. Extra Practice: Study the Classifier Chain method and apply it to the aboveproblem.vi. Extra Practice: Research how confusion matrices, precision, recall, ROC,and AUC are defined for multi-label classification and compute them for theclassifiers you trained in above.2. K-Means Clustering on a Multi-Class and Multi-Label Data SetMonte-Carlo Simulation: Perform the following procedures 50 times, and reportthe average and standard deviation of the 50 Hamming Distances that you calculate.1How to choose parameter ranges for SVMs? One can use wide ranges for the parameters and a finegrid (e.g. 1000 points) for cross validation; however,this method may be computationally expensive. AnaINF 552作业代做、代写MFCCs留学生作业、代写c/c++,Java课程作业、代做Python语言作业 代做留学生lternative way is to train the SVM with very large and very small parameters on the whole training dataand find very large and very small parameters for which the training accuracy is not below a threshold (e.g.,70%). Then one can select a fixed number of parameters (e.g., 20) between those points for cross validation.For the penalty parameter, usually one has to consider increments in log(λ). For example, if one found thatthe accuracy of a support vector machine will not be below 70% for λ = 10?3 and λ = 106, one has to chooselog(λ) ∈ {?3, ?2, . . . , 4, 5, 6}. For the Gaussian Kernel parameter, one usually chooses linear increments,e.g. σ ∈ {.1, .2, . . . , 2}. When both σ and λ are to be chosen using cross-validation, combinations of verysmall and very large λ’s and σ’s that keep the accuracy above a threshold (e.g.70%) can be used to determinethe ranges for σ and λ. Please note that these are very rough rules of thumb, not general procedures.2It seems that the data are already normalized.3The convention is to use L1 penalty with linear kernel.4It seems that the data are already normalized.1Homework 5 INF 552, Instructor: Mohammad Reza Rajati(a) Use k-means clustering on the whole Anuran Calls (MFCCs) Data Set (do not splitthe data into train and test, as we are not performing supervised learning in thisexercise). Choose k ∈ {1, 2, . . . , 50} automatically based on one of the methodsprovided in the slides (CH or Gap Statistics or scree plots or Silhouettes) or anyother method you know.(b) In each cluster, determine which family is the majority by reading the true labels.Repeat for genus and species.(c) Now for each cluster you have a majority label triplet (family, genus, species).Calculate the average Hamming distance, Hamming score, and Hamming loss5between the true labels and the labels assigned by clusters.3. ISLR 10.7.24. Extra Practice: The rest of problems in 10.7.5Research what these scores are. For example, see the paper A Literature Survey on Algorithms forMulti-label Learning, by Mohammad Sorower.转自:http://ass.3daixie.com/2019030729243771.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341

推荐阅读更多精彩内容