Spark BlockManagerMaster

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-sparkenv.html#BlockManagerMaster

SparkEnv — Spark Runtime Environment

Spark Runtime Environment(SparkEnv) is the runtime environment with Spark’s public services that interact with each other to establish a distributed computing platform for a Spark application.

Spark Runtime Environment is represented by aSparkEnvobject that holds all the required runtime services for a running Spark application with separate environments for thedriverandexecutors.

The idiomatic way in Spark to access the currentSparkEnvwhen on the driver or executors is to usegetmethod.

importorg.apache.spark._scala>SparkEnv.getres0: org.apache.spark.SparkEnv= org.apache.spark.SparkEnv@49322d04

Table 1.SparkEnvServices

PropertyServiceDescription

rpcEnv

RpcEnv

serializer

Serializer

closureSerializer

Serializer

serializerManager

SerializerManager

mapOutputTracker

MapOutputTracker

shuffleManager

ShuffleManager

broadcastManager

BroadcastManager

blockManager

BlockManager

securityManager

SecurityManager

metricsSystem

MetricsSystem

memoryManager

MemoryManager

outputCommitCoordinator

OutputCommitCoordinator

Table 2. SparkEnv’s Internal Properties

NameInitial ValueDescription

isStopped

Disabled, i.e.false

Used to markSparkEnvstopped.FIXME

driverTmpDir

Tip

EnableINFOorDEBUGlogging level fororg.apache.spark.SparkEnvlogger to see what happens inside.

Add the following line toconf/log4j.properties:

log4j.logger.org.apache.spark.SparkEnv=DEBUG

Refer toLogging.

SparkEnvFactory Object

Creating "Base"SparkEnv—createMethod

create(  conf:SparkConf,  executorId:String,  hostname:String,  port:Int,  isDriver:Boolean,  isLocal:Boolean,  numUsableCores:Int,  listenerBus:LiveListenerBus=null,  mockOutputCommitCoordinator:Option[OutputCommitCoordinator] =None):SparkEnv

createis a internal helper method to create a "base"SparkEnvregardless of the target environment, i.e. a driver or an executor.

Table 3.create's Input Arguments and Their Usage

Input ArgumentUsage

bindAddress

Used to createRpcEnvandNettyBlockTransferService.

advertiseAddress

Used to createRpcEnvandNettyBlockTransferService.

numUsableCores

Used to createMemoryManager,NettyBlockTransferServiceandBlockManager.

When executed,createcreates aSerializer(based onspark.serializersetting). You should see the followingDEBUGmessage in the logs:

DEBUG SparkEnv: Using serializer: [serializer]

It creates anotherSerializer(based onspark.closure.serializer).

It creates aShuffleManagerbased onspark.shuffle.managerSpark property.

It creates aMemoryManagerbased onspark.memory.useLegacyModesetting (withUnifiedMemoryManagerbeing the default andnumCoresthe inputnumUsableCores).

createcreates aNettyBlockTransferService. It usesspark.driver.blockManager.portfor the port on the driverandspark.blockManager.portfor the port on executors.

Caution

FIXMEA picture withSparkEnv,NettyBlockTransferServiceand the ports "armed".

createcreates aBlockManagerMasterobject with theBlockManagerMasterRPC endpoint reference (byregistering or looking it up by nameandBlockManagerMasterEndpoint), the inputSparkConf, and the inputisDriverflag.

Figure 1. Creating BlockManager for the Driver

Note

createregisters theBlockManagerMasterRPC endpoint for the driver and looks it up for executors.

Figure 2. Creating BlockManager for Executor

It creates aBlockManager(using the aboveBlockManagerMaster,NettyBlockTransferServiceand other services).

createcreates aBroadcastManager.

createcreates aMapOutputTrackerMasterorMapOutputTrackerWorkerfor the driver and executors, respectively.

Note

The choice of the real implementation ofMapOutputTrackeris based on whether the inputexecutorIdisdriveror not.

createregisters or looks upRpcEndpointasMapOutputTracker. It registersMapOutputTrackerMasterEndpointon the driver and creates a RPC endpoint reference on executors. The RPC endpoint reference gets assigned as theMapOutputTracker RPC endpoint.

Caution

FIXME

It creates a CacheManager.

It creates a MetricsSystem for a driver and a worker separately.

It initializesuserFilestemporary directory used for downloading dependencies for a driver while this is the executor’s current working directory for an executor.

An OutputCommitCoordinator is created.

Note

createis called bycreateDriverEnvandcreateExecutorEnv.

Registering or Looking up RPC Endpoint by Name —registerOrLookupEndpointMethod

registerOrLookupEndpoint(name:String, endpointCreator: =>RpcEndpoint)

registerOrLookupEndpointregisters or looks up a RPC endpoint byname.

If called from the driver, you should see the following INFO message in the logs:

INFO SparkEnv: Registering [name]

And the RPC endpoint is registered in the RPC environment.

Otherwise, it obtains a RPC endpoint reference byname.

Creating SparkEnv for Driver —createDriverEnvMethod

createDriverEnv(  conf:SparkConf,  isLocal:Boolean,  listenerBus:LiveListenerBus,  numCores:Int,  mockOutputCommitCoordinator:Option[OutputCommitCoordinator] =None):SparkEnv

createDriverEnvcreates aSparkEnvexecution environment for the driver.

Figure 3. Spark Environment for driver

createDriverEnvaccepts an instance ofSparkConf,whether it runs in local mode or not,LiveListenerBus, the number of cores to use for execution in local mode or0otherwise, and aOutputCommitCoordinator(default: none).

createDriverEnvensures thatspark.driver.hostandspark.driver.portsettings are defined.

It then passes the call straight on to thecreate helper method(withdriverexecutor id,isDriverenabled, and the input parameters).

Note

createDriverEnvis exclusively used bySparkContext to create aSparkEnv(while aSparkContext is being created for the driver).

Creating SparkEnv for Executor —createExecutorEnvMethod

createExecutorEnv(  conf:SparkConf,  executorId:String,  hostname:String,  port:Int,  numCores:Int,  ioEncryptionKey:Option[Array[Byte]],  isLocal:Boolean):SparkEnv

createExecutorEnvcreates anexecutor’s (execution) environmentthat is the Spark execution environment for an executor.

Figure 4. Spark Environment for executor

Note

createExecutorEnvis aprivate[spark]method.

createExecutorEnvsimplycreates the baseSparkEnv(passing in all the input parameters) andsets it as the currentSparkEnv.

Note

The number of coresnumCoresis configured using--corescommand-line option ofCoarseGrainedExecutorBackendand is specific to a cluster manager.

Note

createExecutorEnvis used whenCoarseGrainedExecutorBackendrunsandMesosExecutorBackendregisters a Spark executor.

Getting Current SparkEnv —getMethod

get:SparkEnv

getreturns the currentSparkEnv.

importorg.apache.spark._scala>SparkEnv.getres0: org.apache.spark.SparkEnv= org.apache.spark.SparkEnv@49322d04

Stopping SparkEnv —stopMethod

stop():Unit

stopchecksisStoppedinternal flag and does nothing when enabled.

Note

stopis aprivate[spark]method.

Otherwise,stopturnsisStoppedflag on, stops allpythonWorkersand requests the following services to stop:

MapOutputTracker

ShuffleManager

BroadcastManager

BlockManager

BlockManagerMaster

MetricsSystem

OutputCommitCoordinator

stoprequestsRpcEnvto shut downandwaits till it terminates.

Only on the driver,stopdeletes thetemporary directory. You can see the following WARN message in the logs if the deletion fails.

WARN Exception while deleting Spark temp dir: [path]

Note

stopis used whenSparkContextstops(on the driver) andExecutorstops.

Settings

Table 4. Spark Properties

Spark PropertyDefault ValueDescription

spark.serializer

org.apache.spark.serializer.JavaSerializer

Serializer

TIP: Enable DEBUG logging level fororg.apache.spark.SparkEnvlogger to see the current value.

` DEBUG SparkEnv: Using serializer: [serializer]`

spark.closure.serializer

org.apache.spark.serializer.JavaSerializer

Serializer

spark.memory.useLegacyMode

false

Controls what type of theMemoryManagerto use. When enabled (i.e.true) it is the legacyStaticMemoryManagerwhileUnifiedMemoryManagerotherwise (i.e.false).

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容