递归优化

es6出来已经很长时间了,平时工作中也会用到很多es6的新特性,自以为很多东西已经了解清楚了。

周末有空从头开始把软大神写的es6从头开始又看了一遍,发现好多东西都是囫囵吞枣,很多概念都没理解清楚。特别是在函数的扩展模块,以前压根就没看到最后,关于递归尾调用这里,概念都不清楚。

之前写的权限框架涉及很多tree的递归遍历,递归消耗性能,递归嵌套层级过多容易导致栈溢出,这个问题众所周知,所以怎么处理递归调用就很重要,这个尾调用优化正好就是解决这个问题。

关于尾调用的概念,直接引用阮一峰的文档,也可以直接查看ES6文档http://es6.ruanyifeng.com/#docs/function

一、阶乘

1.递归

       const { log } = console
        //获取阶乘
        //方式一:递归 复杂度O(n) 
        function getJc(n){
            if(n===1) return 1
            return n * getJc(n-1)
        }
        log('递归',getJc(4))

2.递归优化

        //方式二:递归优化 复杂度O(1)
        function getJc1(n,x){
            if(n===1) return x
            return  getJc1(n-1, x * n)
        }
        log('递归优化',getJc1(6,1))

3.循环

        //方式三:循环 效率高,缺点是定义变量多,变量改变频繁
        function getJc2(n){
            if( n <= 2 ) return n
            let cj = 1
            let n1 = 1
            for( let i = 1; i <= n; i++ ){
                n1 = cj
                cj = n1 * i
            }
            return cj
        }
        log('循环',getJc2(6))        

4.柯里化

//这种方式只是将传参方式改变了下,本质还是尾调用优化处理
function currying(fn, n) {
  return function (m) {
    return fn.call(this, m, n);
  };
}

function tailFactorial(n, total) {
  if (n === 1) return total;
  return tailFactorial(n - 1, n * total);
}

const factorial = currying(tailFactorial, 1);

factorial(5) // 120

二、斐波那契数列

1.递归

// 广度优先遍历
let tempArr = []
function f(tree){
    tempArr = []
    tree.forEach(item=>{
        console.log(item.id)
        if(item.child){
            tempArr = tempArr.concat(item.child)
        }
    })
    tempArr.length > 0 && f(tempArr)
}
const tree = [{id:1,child:
[{id:2,child:[{id:4,child:[{id:8,id:9}]}]}]}]
f(tree) //1 2 4 9

// 深度优先遍历
let temArr = []
function f(tree){
    tree.forEach(item=>{
        console.log('item.id',item.id)
        if(item.child){
            f(item.child)
        }
    })
}
      const { log } = console
        
      //斐波那契数列
        //方式一:递归
        function Fibonacci (n) {
            if ( n <= 1 ) {return 1};
            return Fibonacci(n - 1) + Fibonacci(n - 2);
        }
        log('递归',Fibonacci(9))

2.递归尾调用优化

        //方式二:尾递归调用优化 优点:减少重复计算,性能高,代码优雅 
       // 缺点:代码理解难度大
        function Fibonacci1 (n,x=1,y=1) {
            if ( n <= 1 ) {return y};
            return Fibonacci1(n - 1,y,x+y);
        }
      log('尾调用优化',Fibonacci1(9))

function curr1(fn,x,y){
    return function(n){
        return fn.call(this,n,x,y)
    }
}
const n1 = curr1(Fibonacci1,1,1)
n1(8) // 21
n1(6) // 8

3.循环

        //方式三:循环 优点:无重复计算,速度快;缺点:变量多,改变频繁
        function Fibonacci2 (n) {
            if ( n <= 2 ) {return n};
            let n1 = 1,n2 = 1, sum = 0
            for(let i = 2; i <= n; i++){
                sum = n1 + n2
                n1 = n2
                n2 = sum
            }
            return sum;
        }
        log('循环',Fibonacci2(80))

4.递归➕缓存

        //方式四:递归➕缓存 
       
        function memozi(fn){
            let obj = {}
            return function(n){
                if(!obj[n]){
                    return obj[n] = fn(n)
                }else{
                    return obj[n]
                }
            }
        }
        const Fibonacci3 =  memozi ( function(n) {
            if ( n <= 2 ) {return n};
            return Fibonacci3(n-1) + Fibonacci3(n-2);
        })
        log('递归➕缓存',Fibonacci3(80))

以下,引用于阮一峰《ECMAScript 6 入门》
http://es6.ruanyifeng.com/#docs/function

一、什么是尾调用?

尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。

function f(x){
  return g(x);
}

上面代码中,函数f的最后一步是调用函数g,这就叫尾调用。

以下三种情况,都不属于尾调用。

// 情况一
function f(x){
  let y = g(x);
  return y;
}

// 情况二
function f(x){
  return g(x) + 1;
}

// 情况三
function f(x){
  g(x);
}
//情况三等同于
function f(x){
  g(x);
  return undefined;
}

上面代码中,情况一是调用函数g之后,还有赋值操作,所以不属于尾调用,即使语义完全一样。情况二也属于调用后还有操作,即使写在一行内。

尾调用不一定出现在函数尾部,只要是最后一步操作即可

function f(x) {
  if (x > 0) {
    return m(x)
  }
  return n(x);
}

上面代码中,函数m和n都属于尾调用,因为它们都是函数f的最后一步操作。

二、尾调用优化

尾调用之所以与其他调用不同,就在于它的特殊的调用位置。

我们知道,函数调用会在内存形成一个“调用记录”,又称“调用帧”(call frame),保存调用位置和内部变量等信息。如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到A,B的调用帧才会消失。如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个“调用栈”(call stack)。

尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧,因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。

function f() {
  let m = 1;
  let n = 2;
  return g(m + n);
}
f();

// 等同于
function f() {
  return g(3);
}
f();

// 等同于
g(3);

上面代码中,如果函数g不是尾调用,函数f就需要保存内部变量m和n的值、g的调用位置等信息。但由于调用g之后,函数f就结束了,所以执行到最后一步,完全可以删除f(x)的调用帧,只保留g(3)的调用帧。

这就叫做“尾调用优化”(Tail call optimization),即只保留内层函数的调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是“尾调用优化”的意义。

注意,只有不再用到外层函数的内部变量,内层函数的调用帧才会取代外层函数的调用帧,否则就无法进行“尾调用优化”。

function addOne(a){
  var one = 1;
  function inner(b){
    return b + one;
  }
  return inner(a);
}

上面的函数不会进行尾调用优化,因为内层函数inner用到了外层函数addOne的内部变量one。

三、尾递归

函数调用自身,称为递归。如果尾调用自身,就称为尾递归。

递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。

function factorial(n) {
  if (n === 1) return 1;
  return n * factorial(n - 1);
}

factorial(5) // 120

上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度 O(n) 。

如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。

function factorial(n, total) {
  if (n === 1) return total;
  return factorial(n - 1, n * total);
}

factorial(5, 1) // 120

还有一个比较著名的例子,就是计算 Fibonacci 数列,也能充分说明尾递归优化的重要性。

非尾递归的 Fibonacci 数列实现如下。

function Fibonacci (n) {
  if ( n <= 1 ) {return 1};

  return Fibonacci(n - 1) + Fibonacci(n - 2);
}

Fibonacci(10) // 89
Fibonacci(100) // 超时
Fibonacci(500) // 超时

尾递归优化过的 Fibonacci 数列实现如下。

function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
  if( n <= 1 ) {return ac2};

  return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}

Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity

由此可见,“尾调用优化”对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。ES6 亦是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署“尾调用优化”。这就是说,ES6 中只要使用尾递归,就不会发生栈溢出(或者层层递归造成的超时),相对节省内存。

四、递归函数的改写

尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。比如上面的例子,阶乘函数 factorial 需要用到一个中间变量total,那就把这个中间变量改写成函数的参数。这样做的缺点就是不太直观,第一眼很难看出来,为什么计算5的阶乘,需要传入两个参数5和1?

两个方法可以解决这个问题。方法一是在尾递归函数之外,再提供一个正常形式的函数。

function tailFactorial(n, total) {
  if (n === 1) return total;
  return tailFactorial(n - 1, n * total);
}

function factorial(n) {
  return tailFactorial(n, 1);
}

factorial(5) // 120

上面代码通过一个正常形式的阶乘函数factorial,调用尾递归函数tailFactorial,看起来就正常多了。

函数式编程有一个概念,叫做柯里化(currying),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。

function currying(fn, n) {
  return function (m) {
    return fn.call(this, m, n);
  };
}

function tailFactorial(n, total) {
  if (n === 1) return total;
  return tailFactorial(n - 1, n * total);
}

const factorial = currying(tailFactorial, 1);

factorial(5) // 120

上面代码通过柯里化,将尾递归函数tailFactorial变为只接受一个参数的factorial。

第二种方法就简单多了,就是采用 ES6 的函数默认值。

function factorial(n, total = 1) {
  if (n === 1) return total;
  return factorial(n - 1, n * total);
}

factorial(5) // 120

上面代码中,参数total有默认值1,所以调用时不用提供这个值。

总结一下,递归本质上是一种循环操作。纯粹的函数式编程语言没有循环操作命令,所有的循环都用递归实现,这就是为什么尾递归对这些语言极其重要。对于其他支持“尾调用优化”的语言(比如 Lua,ES6),只需要知道循环可以用递归代替,而一旦使用递归,就最好使用尾递归。

五、严格模式

ES6 的尾调用优化只在严格模式下开启,正常模式是无效的。

这是因为在正常模式下,函数内部有两个变量,可以跟踪函数的调用栈。

  • func.arguments:返回调用时函数的参数。
  • func.caller:返回调用当前函数的那个函数。

尾调用优化发生时,函数的调用栈会改写,因此上面两个变量就会失真。严格模式禁用这两个变量,所以尾调用模式仅在严格模式下生效。

function restricted() {
  'use strict';
  restricted.caller;    // 报错
  restricted.arguments; // 报错
}
restricted();

六、尾递归优化的实现

尾递归优化只在严格模式下生效,那么正常模式下,或者那些不支持该功能的环境中,有没有办法也使用尾递归优化呢?回答是可以的,就是自己实现尾递归优化。

它的原理非常简单。尾递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出。怎么做可以减少调用栈呢?就是采用“循环”换掉“递归”。

下面是一个正常的递归函数。

function sum(x, y) {
  if (y > 0) {
    return sum(x + 1, y - 1);
  } else {
    return x;
  }
}

sum(1, 100000)
// Uncaught RangeError: Maximum call stack size exceeded(…)

上面代码中,sum是一个递归函数,参数x是需要累加的值,参数y控制递归次数。一旦指定sum递归 100000 次,就会报错,提示超出调用栈的最大次数。

蹦床函数(trampoline)可以将递归执行转为循环执行。

function trampoline(f) {
  while (f && f instanceof Function) {
    f = f();
  }
  return f;
}

上面就是蹦床函数的一个实现,它接受一个函数f作为参数。只要f执行后返回一个函数,就继续执行。注意,这里是返回一个函数,然后执行该函数,而不是函数里面调用函数,这样就避免了递归执行,从而就消除了调用栈过大的问题。

然后,要做的就是将原来的递归函数,改写为每一步返回另一个函数。

function sum(x, y) {
  if (y > 0) {
    return sum.bind(null, x + 1, y - 1);
  } else {
    return x;
  }
}

上面代码中,sum函数的每次执行,都会返回自身的另一个版本。

现在,使用蹦床函数执行sum,就不会发生调用栈溢出。

trampoline(sum(1, 100000))
// 100001

蹦床函数并不是真正的尾递归优化,下面的实现才是。

function tco(f) {
  var value;
  var active = false;
  var accumulated = [];

  return function accumulator() {
    accumulated.push(arguments);
    if (!active) {
      active = true;
      while (accumulated.length) {
        value = f.apply(this, accumulated.shift());
      }
      active = false;
      return value;
    }
  };
}

var sum = tco(function(x, y) {
  if (y > 0) {
    return sum(x + 1, y - 1)
  }
  else {
    return x
  }
});

sum(1, 100000)
// 100001

上面代码中,tco函数是尾递归优化的实现,它的奥妙就在于状态变量active。默认情况下,这个变量是不激活的。一旦进入尾递归优化的过程,这个变量就激活了。然后,每一轮递归sum返回的都是undefined,所以就避免了递归执行;而accumulated数组存放每一轮sum执行的参数,总是有值的,这就保证了accumulator函数内部的while循环总是会执行。这样就很巧妙地将“递归”改成了“循环”,而后一轮的参数会取代前一轮的参数,保证了调用栈只有一层。

以上,引用于阮一峰《ECMAScript 6 入门》
http://es6.ruanyifeng.com/#docs/function

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,924评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,781评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,813评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,264评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,273评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,383评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,800评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,482评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,673评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,497评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,545评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,240评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,802评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,866评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,101评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,673评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,245评论 2 341