- Goal: Learn from reward to adapt the environment
- Setting:
- action/decision(agent -> environment)
- reward/state (environment ->agent)
- 怎么理解state? -> 人对狗狗施加的命令
- Policy -- for Agent: learning a classifier(state->action)
- Agent's Goal: discounted reward $\sum_{t=1}^\infty \gamma^t r_t$
- Difference between RL and planning:
- RL: learning a model and find policy from samples
- Planing: find an optimal solution with a well-defined problem.
- Difference between RL and SL:
- All learn the model, but SL学的是batch的数据,一次性学,从数据到算法到模型,DAG单向路径
- RL:闭环/数据不同,环境->数据->算法->模型->环境
- 决策影响实践/环境 : 强化学习适用
Introduction to Reinforcement Learning
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...