Women in Data Sciences(WiDS)Conference @HKU

Opening

Processor Alice Wong
Associate Dean of Science, HKU

  • WiDS 2017 is a collaboration among Stanford University, SAP, Google, Microsoft and Walmart Labs.
  • 50th Anniversary for HKU Department of Statistic and Actuarial Science
  • the big data research cluster @HKU

Talk 1: Women in Data Science

Speaker:
Anita Varshney
Global Strategy Transformation Lead, SAP Hong Kong

  1. WiDS
  • held by Stanford every February (March in Asia)
  • keynote speakers from various industries that are doing data science now
  • having largest attending number actually in middle east
  1. SAP
  • the world's largest provider of enterprise application software
  • HQ in Germany; founded in 1972
  • career suggestion: look for a good mentor
  • present in 26 industries
  • Real time processes, Prediction and simulation, great User experience, Agility and TCO
  1. SAP next-gen
  • Providing platform for college students to present their ideas directly to business customers.
  • Technologies
    - Machine learning
    - IoT

*Amazing time management of presentation

Talk 2: Big Data Decision Analysis

"Big data is something that breaks Microsoft Excel" (lol)

Research project - Machine Learning for Chinese Suicide Newspaper Articles Classification

Analysis how the media report suicide incidence, and to figure out how to prevent suicide.

  • WiseNews database: over 220K search result for the keyword "suicide", containing 84 million terms
  • Big data challenges
    • Noisy dataset: e.g. "suicide car booming attack"
    • Data classification
  • Supervised Machine Learning (use labeled articles to train)
  • Web Interface for manually label
  • Article features extraction for ML
    • Text Segmentation: Sentence -> Words -> N-grams
      • Tool: Jieba(结巴) - functionalities like MP & HMM(Hidden Markov Model)
        • State Transition Matrix: P(M|B) >> P(E|B)
    • Document Representation
      • Word to Document Matrix (not very efficient)
      • Chosen approach - Word Embedding (Word2Vec)
        • each word is represented by a vector of fixed number of dimensions (usually 30-500d)
        • Neural network: to determine the dimensions of the document vector, CBOW and Skip-Gram Model
        • Cosine similarity
  • Classification (Training)
    • labeled dataset: 70% for training and 30% for testing
    • P(Suicide = Yes) 85.9% accuracy, P(Student = No), P(HK = Yes), ...
  • Future work
    • Identify any pattern of misclassification
    • Increase dimensions of the word vectors
    • Deep learning approach for other NLP tasks with this dataset
      • Predict the method used for suicide
      • Predict the reasons used for suicide

Talk 3: Predictive Analytics

Vanessa Ko
Head of Presales SAP Hong Kong

  1. SAP HK
  • Customers: I.T., Cathay Pacific, PizzaHut, etc.
  • Biggest competitor: overall no, only in some sub-areas.
  1. Predictive Analytics
  • How to make use of digitalized historical data
  • Case: Obama for America 2012
    • Data source: Historical voting data, Census, Volunteer collected data, Facebook, etc;
    • Segments of voters, Found raising prediction, who's persuadable?
    • Data Modeling: VOTING RATE MODEL, SUPPORT RATE MODEL, Persuasive Rating, Overall score;
    • Goal: Target Voters, Donators and Volunteers -> especially swing voters (not too supportive or too opposing)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容