动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

  继续讲故事~~
  转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了。这天晚上,妈妈正在耐心地帮丁丁收拾行李。家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编号、重要、价值如下表所示:

妈妈想要在袋子所能承受的范围内,使得行李的价值最大,并且每件行李只能选择带或者不带。这下妈妈可犯难了,虽然收拾行李不在话下,但是想要解决这个问题,那就不是她的专长了。于是,她把这件事告诉了丁丁。
  丁丁听了,想起了几天前和小连一起解决的子集和问题(subset sum problem),他觉得这个背包问题(其实是0-1背包问题)和子集和问题有很多类似之处,应该也是用动态规划法来解决。有个这个想法,他就立马拿出稿纸开始推演起来:
  假设背包总的承受重要为W, 总的行李j件数为n,行李的重量列表为w, 价值的列表为v。 假设用dp(i,j)表示用前i个物体,总重要不超过j千克,且价值最大的情况。则有以下情况:

  • 若第i件行李的重要w[i] > j, 则不考虑第i件行李,即dp(i,j)=dp(i-1,j).
  • 若第i件行李的重要w[i] <= j, 则有两种情况: 一种不放入第i件行李,则dp(i,j)=dp(i-1,j); 另一种情况,放入第i件行李,则dp(i,j)=d(i-1, j-w[i])+v[i]。 应该选取两者之间的最大值,即dp(i,j)=max{dp(i-1,j), dp(i-1, j-w[i])+v[i]}。

该问题的子结构有了。那么,接下来,只需要考虑初始值即可:

对于任意的i,j, 有dp(i,0)=dp(0,j)=0.

这样他就完整地描述了该背包问题的算法。于是,他在自己的电脑上迅速地写下了如下的Python代码:

# dynamic programming in 0-1 Knapsack Problem
import numpy as np

# n: number of objects
# W: total weight
# w: list of weight of each object
# v: list of value of each object
# return: maximum value of 0-1 Knapsack Problem
def Knapsack_01(n, W, w, v):
    # create (n+1)*(W+1) table initialized with all 0
    dp = np.array([[0]*(W+1)]*(n+1))

    # using DP to solve 0-1 Knapsack Problem
    for i in range(1, n+1):
        for j in range(1, W+1):
            # if ith item's weight is bigger than j, then do nothing
            if w[i-1] > j:
                dp[i,j] = dp[i-1, j]
            else: # compare the two situations: putt ith item in or not
                dp[i,j] = max(dp[i-1, j], v[i-1] + dp[i-1, j-w[i-1]])

    return dp[n][W] # maximum value of 0-1 Knapsack Problem

# test
W = 20
w = (1, 2, 5, 6, 7, 9)
v = (1, 6, 18, 22, 28, 36)
n = len(w)

t = Knapsack_01(n, W, w, v)
print('max value : %s'%t)

输出结果如下:

max value : 76

  最大的价值是得到了,可是应该选取哪几件行李的?丁丁想到了子集和问题,选取行李即相当于选取价值集合的一个子集,使得它们的和为最大价值。于是,代码就变成了:

# dynamic programming in 0-1 Knapsack Problem
import numpy as np

# n: number of objects
# W: total weight
# w: list of weight of each object
# v: list of value of each object
# return: maximum value of 0-1 Knapsack Problem
def Knapsack_01(n, W, w, v):
    # create (n+1)*(W+1) table initialized with all 0
    dp = np.array([[0]*(W+1)]*(n+1))

    # using DP to solve 0-1 Knapsack Problem
    for i in range(1, n+1):
        for j in range(1, W+1):
            # if ith item's weight is bigger than j, then do nothing
            if w[i-1] > j:
                dp[i,j] = dp[i-1, j]
            else: # compare the two situations: putt ith item in or not
                dp[i,j] = max(dp[i-1, j], v[i-1] + dp[i-1, j-w[i-1]])

    return dp[n][W] # maximum value of 0-1 Knapsack Problem

# using DP to solve subset sum problem
def isSubsetSum(v, n, max_value):
    # The value of subset[i, j] will be
    # true if there is a subset of
    # set[0..j-1] with sum equal to i
    subset = np.array([[True]*(max_value+1)]*(n+1))

    # If sum is 0, then answer is true
    for i in range(0, n+1):
        subset[i, 0] = True

    # If sum is not 0 and set is empty,
    # then answer is false
    for i in range(1, max_value+1):
        subset[0, i] = False

    # Fill the subset table in bottom-up manner
    for i in range(1, n+1):
        for j in range(1, max_value+1):
            if j < v[i-1]:
                subset[i, j] = subset[i-1, j]
            else:
                subset[i, j] = subset[i-1, j] or subset[i-1, j-v[i-1]]

    if subset[n, max_value]:
        sol = []
        # using backtracing to find the solution
        i = n
        while i >= 0:
            if subset[i, max_value] and not subset[i-1, max_value]:
                sol.append(v[i-1])
                max_value -= v[i-1]
            if max_value == 0:
                break
            i -= 1
        return sol
    else:
        return []

def main():
    # test
    W = 20
    w = (1, 2, 5, 6, 7, 9)
    v = (1, 6, 18, 22, 28, 36)
    n = len(w)

    max_value = Knapsack_01(n, W, w, v)
    sol = isSubsetSum(v, n, max_value)

    items = [v.index(i) for i in sol]

    print('Max value : %s'%max_value)
    print('Chosen items: %s'%items)

main()

输出结果如下:

Max value : 76
Chosen items: [5, 3, 2]

因此,在妈妈的这个问题中,能达到的最大价值为76, 应该选取第2,3,5件行李。
  解决该问题后,丁丁立马把结果和解答的过程告诉了妈妈。妈妈虽然没有听懂,但是确信这就是正确答案,同时也深深地为自己的儿子感到自豪,只是,心里总是有点不舍。她语重心长地对丁丁说道:“大城市不比我们乡下,要时刻注意自己的安全,同时,也不要过分炫耀自己的能力,要谦虚做人,谨慎行事。”丁丁点点了,其实,他也舍不得离开家,离开妈妈,但是,毕竟他想要去看看外面的世界~~
  未完待续~~
注意:本人现已开通两个微信公众号: 用Python做数学(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容