陈巍学基因视频学习记录--甲基化测序

陈巍学基因系列视频可以说是一个非常有名的学习视频了,去年刚开始接触生信的时候听过其中的一些视频,讲的非常容易理解,可以在优酷上看完整系列。

这篇笔记是把其中甲基化测序这一视频进行文字化,这样不方便看视频的时候可以随时翻看笔记。

视频地址(youtube地址):https://www.youtube.com/watch?v=UvEt_O3LQQc
国内的小伙伴可以在优酷上搜索~

什么是DNA甲基化?

DNA的甲基化是在DNA的序列不变的条件下,在其中某些碱基上加上甲基的这样一个过程。DNA甲基化的结果,一般是使甲基化位点的下游的基因表达量变少。

甲基化的核心化学反应是什么?

这个分析方法当中的核心化学反应,是用亚硫酸氢盐来处理DNA。DNA当中,没有甲基化或羟甲基化的C碱基,就会被转化成U碱基。我们来看这个转化的过程,在弱酸性条件下,亚硫酸氢根会结合到没有甲基化的C碱基的6位。而甲基化了的C碱基不会和亚硫酸氢根发生反应的。然后用碱来处理。结合了亚硫酸氢根的非甲基化的C,就被脱氨基,并且脱亚硫酸根。从而被转化成U碱基。

而甲基化或者羟甲基化的C碱基,因为之前没有和亚硫酸氢根起反应,所以现在用碱来处理,它也不会发生脱氨基反应。所以,它还保持了是“C”。用亚硫酸氢盐来处理DNA,可以让99%左右的非甲基化的C碱基变成U。转化效率达到了99%。接下来通过高通量测序的方法,可以精确地看到单个碱基的甲基化的水平。经过亚硫酸氢盐转化过的DNA,再经过PCR,PCR新合成出来的链,U碱基的位置,就会被替换成了“T”。在接下来的测序过程中,测到的也是T碱基。而甲基化的C,因为没有被亚硫酸氢盐所转化,所以,在接下来的测序过程中,被测到的还是“C”碱基。通过测序,看一个位置是“C”,还是“T”。如果它保持是“C”,就说明这个位置是被甲基化、或者羟甲基化了。如果测到的是“T”,就说明这个位置是没有被甲基化、或者羟甲基化。

建库方法有哪些?

方法一

用Illumina公司的Truseq DNA建库方法:

因为Illumina Truseq DNA建库试剂盒当中,它所提供的接头上的C碱基都是已经甲基化的了。所以,用这些接头做出来的文库,在用亚硫酸氢盐做转化的过程当中,它的(接头上的)C还是保持是C ,不会被转成U。带了这些接头的文库分子,就可以和测序芯片上的草皮DNA发生互补杂交。并且进一步发生桥式PCR反应。生成测序用的DNA的簇(Cluster)。

缺点: 用亚硫酸氢盐处理DNA文库的时侯,90%以上的DNA链会断掉。这样,已经建好的文库,其中90%分子会被破坏掉。也就是说文库的丰富度就会损失90%以上。
优点:在建库过程当中用的PCR循环数较少。所以由于PCR扩增效率不同所引起的文库不均一程度也就较低。也就是我们通常所说的PCR bias较少。

方法二

为了解决文库丰富度受到损失的这个问题,EpiCentre公司开发了EpiGnome方法,方法的操作过程如图。

第1步,亚硫酸氢盐先处理DNA,把未甲基化的C都转变成U。
第2步,把带标签1的随机引物加入,进行第一次的复制。得到第1条的复制链。
第3步,消化掉过量的引物。
第4步,加入带末端终止碱基、并带标签2的随机引物。这个引物的作用是让第1复制链延伸,并且加上标签2。
第5步,加入建库的PCR引物,进行PCR。通过PCR,把Index序列和成簇引物序列加入到链的两侧。得到真正的文库。

优点:把亚硫酸氢盐处理的过程,放在了建库之前。这样建成的库的丰富程度会比较高。
缺点:较多的PCR循环,PCR产物的扩增均一性不是很好。也就是说PCR bias会比较大。

上述两种建库方法各有优缺点。

测序平台是什么?

在Illumina的HiSeq 2000或者2500平台上进行测序,如果文库是碱基平衡的文库,也就是说,每个循环当中,A/C/G/T四种碱基的比例,各占25%左右的话,测序仪对碱基的判读会比较好。但是如果缺少了一种或者几种碱基,测序仪对碱基的判读就会出问题。测序得到的数据质量就会下降。并且有效的数据产量也会降低。因为甲基化文库中经过亚硫酸氢盐处理,绝大多数的C都变成了T。所以这个文库中是严重地缺少C碱基的,也就是四种碱基的比例是严重不平衡的。这样在用HiSeq 2000或2500测序仪来测甲基化文库的过程当中,文库测序得到的数据质量较差。并且经过PF过滤得到的有效的数据产量也会较低。为了弥补甲基化文库的碱基不平衡性,一般情况下,在上机过程当中,是掺入大比例的基因组文库,或者PhiX文库,来补充比较多的C碱基,一般会掺30%的PhiX文库、或者基因组文库。在掺入30%的PhiX文库的条件下,一条HiSeq 2000 V3 PE100的Lane,大概可以得到20G 左右的甲基化文库数据。也就是说,在HiSeq 2000或者2500平台上,甲基化文库的测序数据产量,一直都不是很高。质量也比较低。

如何区分羟甲基化和甲基化?

在用单纯的亚硫酸氢盐法来测的过程当中,甲基化和羟甲化的C碱基都不能被转化成U碱基,所以单纯的亚硫酸氢盐法是无法区分甲基化或羟甲基化的C碱基的。为了区分甲基化和羟甲基化,目前有两种方法:

方法一

通过高钌酸钾(KRuO4)来氧化羟甲基化的C。羟甲基化的C可以被转化成甲酰化的C碱基,而甲酰化的C碱基,是可以被亚硫酸氢盐转化成U的。而甲基化的C,不会被转化成U。这样就把原来的羟甲基化的C和甲基化的C给区分开来了。

用高钌酸钾氧化的方法来氧化羟甲基化的C,其转化效率是94%左右。也就是说,每100个羟甲基化的C中,有94个会被高钌酸钾转化成甲酰化的C。并进一步被亚硫酸氢盐转化成U。同时,原来的甲基化的C,只有2.1%会被转化成甲酰化的C。

方法二

用糖基把羟甲基化的C给保护起来。然后用TET蛋白(Ten-eleven translocation methylcytosine dioxygenase 1),把甲基化的C转化成羟基化的C。

进一步将羟基化的C转化成甲酰化的C和羧基化的C。甲酰化的C和羧基化的C都可以被亚硫酸氢盐转化成U。而之前被糖基化保护起来的羟甲基化的C,是不会被TET蛋白转化成甲酰化的C或者羧基化的C的。在亚硫酸氢盐的处理过程中,它还保持是C。并且在之后的PCR扩增产物中,也表现为C。这样就可以把羟甲基化的C,和甲基化的C,区分开来。用这个方法,没有甲基化的C,99.6%都被转化成了U。甲基化的C,97.7%都被转化成了U。而羟甲基化的C,只有8%被化成了U。也就是说92%的羟甲基化的C得到了糖基的保护,还保持了C。上述,就是目前2个区分羟甲基化的C和甲基化C的方法。

在甲基化文库建程当中,亚硫酸氢盐对未甲基化的C的转化效率并不是100%,一般是在99%左右。为了对实验的转化效率进行质量控制。一般会在转化实验当中加入内参对照品。一般情况下,是用甲基化酶缺陷型的大肠杆菌,所生产出来的完全没有被甲基化的λ(噬菌体)DNA,或者pUC19(质粒)DNA做内参。来看一次实验当中C的转化效率。一般情况下,实验当中是加入1%的完全没有甲基化的λ DNA做内参。同样道理,也可以通过用甲基化酶处理过的,CpG岛完全被甲基化的DNA,来跟踪甲基化DNA对亚硫酸氢盐转化的抵抗效果。

测序后的数据如何处理?

因为亚硫酸氢盐处理过后,绝大部分的C都被转化成了T。这样,测出来的序列在和基因组进行对比的时侯,直接对比是对比不上的。为了进行比对,就要把基因组的碱基做两种转变:

第一种转变是把基因组上所有的C都改到T,再来和测序测到的序列来对比。这样就可以把原来的链对比上。

第二种转变,是把基因组上所有的G都变成A,这样才能和经过PCR得到的原样本链上的互补链对比得上。这样做的原因,是原样本链的互补链,它上面绝大部分的G,都被变成了A。所以,只有把(参考)基因组上的G,也都改成A,这样才能对比得上。比对上之后,再来看哪些碱基是没有被转化的。就可以确认这些碱基的甲基化修饰情况了。

当然还有其他的一些方法可以检测基因组里的甲基化水平,这个视频里并没有把所有的方法介绍一遍。这里有一篇文章写的比较全,可以参考:DNA甲基化测序方法介绍

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 193,968评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,682评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,254评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,074评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 60,964评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,055评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,484评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,170评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,433评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,512评论 2 308
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,296评论 1 325
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,184评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,545评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,880评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,150评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,437评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,630评论 2 335