博弈论思维

什么是博弈论

博弈论(Game Theory)是 研究具有斗争或竞争性质现象的数学理论和方法,二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的[1]

博弈论的发展

1928年,著名科学家、计算机之父冯·诺依曼证明了博弈论定理。

1950年,普林斯顿数学系教授约翰·纳什,通过不动点原理证明了均衡点的存在,并且提出了著名的纳什均衡理论,将博弈论引入到了除数学以外的其它领域内。

约翰·纳什

1994年,约翰·纳什与约翰·海萨尼、莱茵哈德·泽尔滕,处于表彰他们对博弈论做出的贡献,授予三位当年的诺贝尔经济学奖,从此博弈论被推上了学术界高峰地位。2001年一部以约翰·纳什为传记改编的电影《美丽心灵》,诠释了纳什的传奇人生。

2001年,乔治·阿科尔洛夫、斯宾塞和约瑟夫·斯蒂格利茨,利用博弈论分析了市场的信息不对称问题,为现代信息经济学奠定了基础。

2005年,托马斯·克罗姆比·谢林和罗伯特·约翰·奥曼通过博弈论分析了冲突和合作的理解。

2007年,罗杰·迈尔森和埃里克·马斯金、里奥尼德·赫维茨,通过博弈论的研究推动了机制设计理论的发展。

2012年,罗斯与沙普利根据博弈论创建了稳定分配理论。

2014年,梯若尔在产业组织理论以及串谋问题上,采用了博弈论的思想,让理论和问题得以解决,并且在规制理论上也有创新。

纳什均衡理论
纳什均衡

纳什均衡是指在一组组合策略之中,对于每个参与者来说,只要其他人不改变自己的策略,那么他就无法改善自己的状况。简单来说在一种稳定的状态下任何人单独改变策略都得不到好处。

举个例子:我和我的朋友去酒吧去找对象,对面吧台前面有许多美女,一群是金色头发(blonde),还有一群是褐色头发(brunette),此时如果我们要上前搭讪,那么会有这么几种可能性:

①如果我和我的朋友同时找所有的金发女郎搭讪,那么我们找到合适对象的机会是0,因为我们无法深入了解所有人。(0,0)

②如果我的朋友去找所有的金发女郎搭讪,而我去找一位褐发女郎搭讪,那么我成功的概率远大于我的朋友,因为我可以通过足够深入的聊天去了解彼此。(2,5)

③如果我的朋友去找一位褐发女郎搭讪,而我去找所有的金发女郎搭讪,相同的道理我朋友成功的概率会远高于我。(5,2)

④如果我和我的朋友都分别去找一位褐发女郎搭讪,那么我们成功的概率相差无几。(2,2)

在这组找对象的策略组合中,第四种策略即属于纳什均衡策略。也就是说双方可以达到共赢的状态,任何一方变动策略都会是的局面失去平衡。

博弈论工具

(1)博弈树

博弈树

博弈树:又称扩展式博弈模型,由节点、主干、枝干构成的策略组合模型。

如图所示:节点:①、②;主干:U、D;枝干:U‘、D‘

起点①为初始决策点,竞争者:“我”

主干U为“进入”决策的条件:“找所有的金发女郎搭讪”

主干D为“不进入”决策的条件:“找一位褐发女郎搭讪”决策

中间决策点②,竞争者:“我的朋友”

枝干有两个策略:一个是“去找所有金发女郎”,另一个是“去找一位褐发女郎“

决策终止点:决策结果分别为(0,0)和(2,5)

图片发自简书App


(2)博弈表

博弈表
博弈表顾名思义,是以表格的形式进行策略组合分析博弈的模型,又称支付矩阵。上述纳什均衡策略便是博弈表中的一种策略。


博弈论经典案例

(1)囚徒困境

囚徒困境

话说甲乙两名囚犯因抢劫罪被捕入狱,警察需要录口供判定二者的罪行:

如果甲乙都招供罪行,那么各判2年;

如果囚犯乙招供所有罪行都是甲做的,甲保持沉默,那么甲判刑10年,乙当庭释放;

如果囚犯乙保持沉默,甲招供所有罪行都是乙做的,那么甲当庭释放,乙判10年;

如果两个人都保持沉默,什么都不肯说,那么警察找不到确切证据判刑,只能各判半年。

1950年,由就职于兰德公司的梅里尔·弗勒德和梅尔文·德雷希尔拟定出相关困境的理论,后来由顾问艾伯特·帕克以囚徒方式阐述,并命名为“囚徒困境”[2]。该博弈案例反应的是个人的最优策略并非是集体的最优策略,从案例中可以推出,从最优的策略角度来看,二者都保持沉默不招供,各自只会判半年,然而从人的本性选择来看,却都倾向于招供罪行,因为每个人都怕自己万一保持沉默,对方把罪行全推到自己头上,判10年的罪行。这是人性的弱点所导致的非理性博弈。

(2)智猪博弈

智猪博弈

猪圈里有一只大猪和一只小猪,猪圈一边放着一个由绳索钩挂的猪槽,另一边是连接伸缩的踏板,如果它们想吃到食物必须踩一下这一边的踏板,另一边会有10份食物从猪槽里掉下来。无论谁踩踏板,都会消耗2份食物的能量,下面有这几种情况:

两只猪一起踩踏板,大猪比小猪吃得快,大猪吃了8份,小猪才吃了2份。(6,0)

大猪踩踏板,小猪守在槽边,由于小猪没有出力,只能吃4份食物,大猪可以吃6份。(6,6)

小猪踩踏板,大猪守在槽边,大猪吃得比小猪快,小猪跑过来时,10份全被大猪吃完了。(10,-2)

两只猪都不踩踏板,全部没食物吃。(0,0)

在企业中,大企业就好比大猪,中小企业就好比是小猪。控制按钮可以比作技术创新,可以给企业带来收益。大企业资金雄厚,生产力大,有更多的能力进行技术创新,推出新产品后可以迅速占领市场获得高额利润。而小企业的最优选择就是等待,等大企业技术创新后,跟在大企业后,抢占市场份额,从这种创新中获得利益[3]

博弈论类型

(1)零和博弈:表示所有博弈方的利益之和为零或一个常数,即一方有所得,其他方必有所失[4]。生活中的俗语:“不是你死就是我亡”、“非黑即白”。

(2)非零和博弈:是与零和博弈相对的概念,一方有所得,另一方也可能有所得,最终是一个双赢或者双输的局面。生活中的俗语:“合作共赢”、“同归于尽”。

参考文献:

[1]360百科:博弈论

[2]Wikpadia:囚徒困境

[3]MBA智库:智猪博弈

[4]Wikpadia:零和博弈

本文首发于微信公众号“认知与新思维”。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容

  • 最近看了李易峰主演的《动物世界》,节奏紧张,充满悬念和反转,然而更打动我的是影片主题,人性在残酷世界中的冰冷博弈,...
    云舒梦Shirley阅读 921评论 0 7
  • 实例一、坐公交案例公交路线是这样的,636路公交,A地(始发站)到B地(终点站),我处于始发站的第五站C站,C地呢...
    Mystyle007阅读 273评论 0 0
  • 我觉得有意思的一个点:很多博弈有效的前提是需要参与者都是理性人。因为非理性人不可预测。 比如海盗分金、枪手博弈、冷...
    426柚子阅读 5,051评论 1 1
  • 这题最复杂的地方是正负号问题。算法是Bit shifting.
    98Future阅读 176评论 0 0
  • 写此分享的目的在于记录自己在实现UI自动化工作的心路历程,and希望可以借自己的亲身经历及经验给小伙伴做个参考。未...
    hellokitty小丸子阅读 652评论 0 5