16 SVM - 代码案例三 - 不同SVM核函数效果比较

SVM的章节已经讲完,具体内容请参考:《01 SVM - 大纲

14 SVM - 代码案例一 - 鸢尾花数据SVM分类
15 SVM - 代码案例二 - 鸢尾花数据不同分类器效果比较

常规操作:

1、头文件引入SVM相关的包
2、防止中文乱码
3、读取数据
4、数据分割训练集和测试集 6:4

import time
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

## 读取数据
# 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'
path = './datas/iris.data'  # 数据文件路径
data = pd.read_csv(path, header=None)
x, y = data[list(range(4))], data[4]
y = pd.Categorical(y).codes
x = x[[0, 1]]

## 数据分割
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=28, train_size=0.6)

数据SVM分类器构建:

1、线性核;2、高斯核;3、多项式核;4、Sigmoid核函数;
10 SVM - 核函数 - 文末对四种核函数进行了介绍,尤其是高斯核。

svm1 = SVC(C=1, kernel='linear')
svm2 = SVC(C=1, kernel='rbf')
svm3 = SVC(C=1, kernel='poly')
svm4 = SVC(C=1, kernel='sigmoid')

## 模型训练
t0=time.time()
svm1.fit(x_train, y_train)
t1=time.time()
svm2.fit(x_train, y_train)
t2=time.time()
svm3.fit(x_train, y_train)
t3=time.time()
svm4.fit(x_train, y_train)
t4=time.time()

效果评估:

svm1_score1 = accuracy_score(y_train, svm1.predict(x_train))
svm1_score2 = accuracy_score(y_test, svm1.predict(x_test))

svm2_score1 = accuracy_score(y_train, svm2.predict(x_train))
svm2_score2 = accuracy_score(y_test, svm2.predict(x_test))

svm3_score1 = accuracy_score(y_train, svm3.predict(x_train))
svm3_score2 = accuracy_score(y_test, svm3.predict(x_test))

svm4_score1 = accuracy_score(y_train, svm4.predict(x_train))
svm4_score2 = accuracy_score(y_test, svm4.predict(x_test))
画图 - 鸢尾花数据SVM分类器不同内核函数模型比较:
x_tmp = [0,1,2,3]
t_score = [t1 - t0, t2-t1, t3-t2, t4-t3]
y_score1 = [svm1_score1, svm2_score1, svm3_score1, svm4_score1]
y_score2 = [svm1_score2, svm2_score2, svm3_score2, svm4_score2]

plt.figure(facecolor='w', figsize=(12,6))
模型预测准确率比较:
plt.subplot(121)
plt.plot(x_tmp, y_score1, 'r-', lw=2, label=u'训练集准确率')
plt.plot(x_tmp, y_score2, 'g-', lw=2, label=u'测试集准确率')
plt.xlim(-0.3, 3.3)
plt.ylim(np.min((np.min(y_score1), np.min(y_score2)))*0.9, 
    np.max((np.max(y_score1), np.max(y_score2)))*1.1)
plt.legend(loc = 'lower left')
plt.title(u'模型预测准确率', fontsize=13)
plt.xticks(x_tmp, [u'linear-SVM', u'rbf-SVM', u'poly-SVM', u'sigmoid-SVM'], rotation=0)
plt.grid(b=True)
模型训练耗时比较:
plt.subplot(122)
plt.plot(x_tmp, t_score, 'b-', lw=2, label=u'模型训练时间')
plt.title(u'模型训练耗时', fontsize=13)
plt.xticks(x_tmp, [u'linear-SVM', u'rbf-SVM', u'poly-SVM', u'sigmoid-SVM'], rotation=0)
plt.xlim(-0.3, 3.3)
plt.grid(b=True)
plt.suptitle(u'鸢尾花数据SVM分类器不同内核函数模型比较', fontsize=16)
plt.show()

预测结果画图

画图比较:
N = 500
x1_min, x2_min = x.min()
x1_max, x2_max = x.max()

t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, N)
x1, x2 = np.meshgrid(t1, t2)  # 生成网格采样点
grid_show = np.dstack((x1.flat, x2.flat))[0] # 测试点
获取各个不同算法的测试值:
svm1_grid_hat = svm1.predict(grid_show)
svm1_grid_hat = svm1_grid_hat.reshape(x1.shape)  # 使之与输入的形状相同

svm2_grid_hat = svm2.predict(grid_show)
svm2_grid_hat = svm2_grid_hat.reshape(x1.shape)  # 使之与输入的形状相同

svm3_grid_hat = svm3.predict(grid_show)
svm3_grid_hat = svm3_grid_hat.reshape(x1.shape)  # 使之与输入的形状相同

svm4_grid_hat = svm4.predict(grid_show)
svm4_grid_hat = svm4_grid_hat.reshape(x1.shape)  # 使之与输入的形状相同
画图:
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.figure(facecolor='w', figsize=(14,7))
1、鸢尾花Linear-SVM特征分类 (线性核)
plt.subplot(221)
## 区域图
plt.pcolormesh(x1, x2, svm1_grid_hat, cmap=cm_light)
## 所以样本点
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark)      # 样本
## 测试数据集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10)     # 圈中测试集样本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花Linear-SVM特征分类', fontsize=16)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
2、鸢尾花rbf-SVM特征分类 (高斯核)
plt.subplot(222)
## 区域图
plt.pcolormesh(x1, x2, svm2_grid_hat, cmap=cm_light)
## 所以样本点
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark)      # 样本
## 测试数据集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10)     # 圈中测试集样本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花rbf-SVM特征分类', fontsize=16)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
3、鸢尾花poly-SVM特征分类 (多项式核)
plt.subplot(223)
## 区域图
plt.pcolormesh(x1, x2, svm3_grid_hat, cmap=cm_light)
## 所以样本点
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark)      # 样本
## 测试数据集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10)     # 圈中测试集样本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花poly-SVM特征分类', fontsize=16)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
4、鸢尾花sigmoid-SVM特征分类:
plt.subplot(224)
## 区域图
plt.pcolormesh(x1, x2, svm4_grid_hat, cmap=cm_light)
## 所以样本点
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark)      # 样本
## 测试数据集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10)     # 圈中测试集样本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花sigmoid-SVM特征分类', fontsize=16)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
plt.show()

PS: 还记得讲核函数时候说过的话么?
高斯核 可以近似表示无穷维的扩展,效果最好。
sigmoid核 一塌糊涂,不要去用。

17 SVM - 代码案例四 - 不同SVM惩罚参数C值不同效果比较

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容