CAP CP AP之间的关系
CAP原则又称CAP定理,指的是在一个分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partition tolerance)。CAP 原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。
CAP理论提出就是针对分布式数据库环境的,所以,P这个属性是必须具备的。
P就是在分布式环境中,由于网络的问题可能导致某个节点和其它节点失去联系,这时候就形成了P(partition【分隔】),也就是由于网络问题,将系统的成员隔离成了2个区域,互相无法知道对方的状态,这在分布式环境下是非常常见的。
因为P是必须的,那么我们需要选择的就是A和C。
大家知道,在分布式环境下,为了保证系统可用性,通常都采取了复制的方式,避免一个节点损坏,导致系统不可用。那么就出现了每个节点上的数据出现了很多个副本的情况,而数据从一个节点复制到另外的节点时需要时间和要求网络畅通的,所以,当P发生时,也就是无法向某个节点复制数据时,这时候你有两个选择:
选择可用性 A(Availability【可用性】),此时,那个失去联系的节点依然可以向系统提供服务,不过它的数据就不能保证是同步的了(失去了C属性)。
选择一致性 C(Consistency【一致性】),为了保证数据库的一致性,我们必须等待失去联系的节点恢复过来,在这个过程中,那个节点是不允许对外提供服务的,这时候系统处于不可用状态(失去了A属性)。
最常见的例子是读写分离,某个节点负责写入数据,然后将数据同步到其它节点,其它节点提供读取的服务,当两个节点出现通信问题时,你就面临着选择A(继续提供服务,但是数据不保证准确),C(用户处于等待状态,一直等到数据同步完成)。
Eureka与Consul之间的关系
最大的区别是Eureka保证AP, Consul为CP。
Consul强一致性(C)带来的是:
服务注册相比Eureka会稍慢一些。因为Consul的raft协议要求必须过半数的节点都写入成功才认为注册成功
Leader挂掉时,重新选举期间整个consul不可用。保证了强一致性但牺牲了可用性。
Eureka保证高可用(A)和最终一致性:
服务注册相对要快,因为不需要等注册信息replicate到其他节点,也不保证注册信息是否replicate成功
当数据出现不一致时,虽然A, B上的注册信息不完全相同,但每个Eureka节点依然能够正常对外提供服务,这会出现查询服务信息时如果请求A查不到,但请求B就能查到。如此保证了可用性但牺牲了一致性。
其他方面,eureka就是个servlet程序,跑在servlet容器中; Consul则是go编写而成。