箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法。它也可以粗略地看出数据是否具有有对称性,分布的离散程度等信息;特别适用于对几个样本的比较。
注:四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数。
第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。
R语言中计算方法:
quantile函数直接计算四分位:
例如:data = c(1,2,3,4,5,6.2,7,8,9,10)
quantile(data) #其结果如下
0% 25% 50% 75% 100%
1.00 3.25 5.60 7.75 10.00
其中0%:最小值;25%:第一四分位数Q1;50%:中位数;75%:第三四分位数;100%:最大值。
其计算方法为:
1. 排序,从小到大排列data;
2. 计算分位数的位置;pos = 1+ (n-1)*p,n为数据的总个数,p为0-1之间的值
3. 给出分位数
注意:另一种分位数的计算方法为:其他与前面的一致。但是分位数位置的计算采用:pos = (n+1)*p,n为数据的总个数,p为0-1之间的值。
四分位数的计算方法没有一个统计的标准,如果对此计算有要求的,需要注意函数的具体算法。
另外,boxplot中存在异常值,其规定标准如下:
当数据中的值大于或小于箱体的四分位距IQR的1.5倍时,认定为异常值。
就是说当某值大于(Q3+1.5*IQR)或小于(Q1-1.5*IQR)时,处理时会认定为异常值。