数据挖掘是怎样动脑的?以一篇文献为例

作者:白介素2

大家好,这次白介素2同学分享一篇文献,讲一讲一篇数据挖掘文献是怎样动脑的。文献题为

In silico analysis reveals a shared immune signature in CASP8-mutated carcinomas with varying correlations to prognosis 发表在 Peer J杂志, IF大约是2分+,,这是2019年2月发表的,时间比较距离现在比较近。通过标题大概知道就是通过生信分析找到CASP8突变的组肿瘤的免疫标记并且与与预后相关。下面一步步看下作者都做了哪些工作:

方法学部分

文章的方法材料比较简单,主要就是包括:

  • 差异分析
  • GO 和GSEA分析
  • 免疫浸润分析
  • 生存分析
  • 材料:TCGA数据库

差异分析

image.png

从流程图来看比较简单,就是从TCGA下载头颈部鳞癌的数据,分出突变组和非突变组然后做差异分析。白介素同学认为这里其实已经是一个值得学习的地方了,大家扪心自问下,差异分析是不是除了肿瘤组比正常组就再也想不到其它方式了。 作者的这一步操作其实是引入了一个新的变量就是是否突变的问题。下面看下结果:

image.png

上图展示的就是GO 跟GSEA的部分分析结果,这些就是大概汇报下得到哪些结果。然后选中了免疫反应的基因集,

免疫浸润分析

进一步分析免疫浸润,免疫浸润怎么分析呢? 此前白介素2同学写过一篇推文,介绍了免疫浸润的数据挖掘工具,(不知道的可以点这里https://mp.weixin.qq.com/s/igKHHZ2cas-cbw8Pv4J4QA) 。

重要的是,这里作者用的就是白介素同学特别介绍的 TIMER科研神器 https://cistrome.shinyapps.io/timer/,不信你看看图:

[图片上传失败...(image-5a8a36-1550983300766)]

生存分析

[图片上传失败...(image-380691-1550983300766)]

然后就做了一个生存分析,发现是个阴性结果,值得注意的是这里作者用的生存分析又是一个网页工具,叫做Cutoff Finder附个链接给大家:http://molpath.charite.de/cutoff/example.jsp。 按理说这个结果有点尴尬,这个时候作者突然又做了个 子宫内膜癌UCEC**,作者说这个 CASP8基因在UCEC里面也是突变比较多,相当于这里作者又做了一遍这个UCEC肿瘤,把前面步骤重复一遍,做了个比较。

image.png

然后就是讨论比较一下,这个基因突变组在两种肿瘤里面的基因富集情况,免疫浸润情况,预后关系。基本上内容就到这里结束了。后面当然会有大段讨论,分析下各种情况嘛,你懂的。

image.png

白介素同学特地看了下作者信息,作者印度的,个人觉得倒是有些骨骼惊奇了,至少比那些太庸俗套路要好的多了,作者在分析问题呢。用到的分析技术又不复杂,还充分用的一些网页工具。

如何动脑的总结

总结一下,总的来看着篇文章值得学习的地方包括,差异分析的模式,作者引入了新的变量,比常规的肿瘤比正常深入一层了,解答的问题不再是万年不变了。其次,引入了免疫浸润这个热点,操作起来又不难。再者,遇到生存分析的阴性结果,作者又想到了分析另外一种肿瘤,来做比较,提升了文章本身的意义。

这次就分享到这吧,白介素同学祝大家周末愉快。

参考资料:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375258/#ref-21

广而告之

说一个事,鉴于简书平台在信息传播方面有不足之处,应粉丝要求,白介素2的个人微信平台已经开启,继续聊临床与科研的故事,R语言,数据挖掘,文献阅读等内容。当然也不要期望过高,微信平台目前的定位是作为自己的读书笔记,如果对大家有帮助最好。如果感兴趣, 可以扫码关注下。


qrcode_for_gh_9eaa04438675_258.jpg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容