最“懒惰”的kNN分类算法

1. K-近邻算法####

k-近邻算法(k Nearest Neighbor),是最基本的分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类。

2. 算法原理####

存在一个样本数据集合(训练集),并且样本集中每个数据都存在标签(即每一数据与所属分类的关系已知)。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较(计算距离),然后提取样本集中特征最相似数据(最近邻)的分类标签。一般会取前k个最相似的数据,然后取k个最相似数据中出现次数最多的标签(分类)最后新数据的分类。
因此,这是一个很“懒惰”的算法,所谓的训练数据并没有形成一个“模型”,而是一个新的数据需要分类了,去和所有训练数据逐一比较,最终给出分类。这个特征导致在数据量较大时,性能很差劲。

3. 算法过程####

对未知类别属性的数据集中的每个点依次执行以下操作:
1)计算已知类别数据集中的点与当前点之间的距离(欧式距离、曼哈顿距离或者余弦夹角等各种距离算法,具体情况具体分析用哪种);
2)按照距离递增次序排序;
3)选取与当前点距离最小的k个点;
4)确定前k个点所在类别的出现频率;
5)返回前k个点出现频率最高的类别作为当前点的预测分类。

欧氏距离计算:

  1. 二维平面上两点A(x1,y1)与B(x2,y2)间的欧氏距离:
      
  2. 三维空间两点A(x1,y1,z1)与B(x2,y2,z2)间的欧氏距离:
      
  3. n维空间两点的欧式距离以此类推

4. 计算案例####

我还是瞎编一个案例,下表有11个同学的小学成绩和12年后读的大学的情况,现在已知“卫”同学的小学成绩了,可以根据kNN来预测未来读啥大学。



逐一计算各位同学与卫同学的距离,然后我们选定3位(即这里的k=3)最为接近的同学,推测卫同学最终的大学


3位同学中2个清华,1个北邮,所以卫同学很有可能在12年后上清华。

5. 算法要点####

1) K的选择,一般不超过训练集数量的平方根
2)距离更近的近邻也许更应该决定最终的分类,所以可以对于K个近邻根据距离的大小设置权重,结果会更有说服力
3)如果采用欧氏距离计算,不同变量间的值域差距较大时,需要进行标准化,否则值域较大的变量将成为最终分类的唯一决定因素

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容