利用 XXL-JOB 实现灵活控制的分片处理

本文讲述了一种利用 XXL-JOB 来进行分片任务处理的方法,另外加入对执行节点数的灵活控制。

场景

现在一张数据表里有大量数据需要某个服务端应用来处理,要求:

  1. 能够并行处理;
  2. 能够较灵活地控制并行任务数量。
  3. 压力较均衡地分散到不同的服务器节点;

思路

因为需要并行处理同一张数据表里的数据,所以比较自然地想到了分片查询数据,可以利用对 id 取模的方法进行分片,避免同一条数据被重复处理。

根据第 1、2 点要求,本来想通过对线程池的动态配置来实现,但结合第 3 点来考虑,服务器节点数量有可能会变化,节点之间相互无感知无通信,自己在应用内实现一套调度机制可能会很复杂。

如果有现成的独立于这些服务器节点之外的调度器就好了——顺着这个思路,就想到了已经接入的分布式任务调度平台 XXL-JOB,而在阅读其 官方文档 后发现「分片广播 & 动态分片」很贴合这种场景。

image

方案

  1. 利用 XXL-JOB 的路由策略「分片广播」来调度定时任务;
  2. 通过任务参数传入执行任务节点数量;
  3. 定时任务逻辑里,根据获取到的分片参数、执行任务节点数量,决策当前节点是否需要执行,分片查询数据并处理:
    • 如果 分片序号 > (执行任务节点数量 - 1),则当前节点不执行任务,直接返回;
    • 否则,取 分片序号执行任务节点数量 作为分片参数,查询数据并处理。

这样,我们可以实现灵活调度 [1, N] 个节点并行执行任务处理数据。

主要代码示例

JobHandler 示例:

@XxlJob("demoJobHandler")
public void execute() {
    String param = XxlJobHelper.getJobParam();
    if (StringUtils.isBlank(param)) {
        XxlJobHelper.log("任务参数为空");
        XxlJobHelper.handleFail();
        return;
    }

    // 执行任务节点数量
    int executeNodeNum = Integer.valueOf(param);
    // 分片序号
    int shardIndex = XxlJobHelper.getShardIndex();
    // 分片总数
    int shardTotal = XxlJobHelper.getShardTotal();

    if (executeNodeNum <= 0 || executeNodeNum > shardTotal) {
        XxlJobHelper.log("执行任务节点数量取值范围[1,节点总数]");
        XxlJobHelper.handleFail();
        return;
    }

    if (shardIndex > (executeNodeNum - 1)) {
        XxlJobHelper.log("当前分片 {} 无需执行", shardIndex);
        XxlJobHelper.handleSuccess();
        return;
    }

    shardTotal = executeNodeNum;

    // 分片查询数据并处理
    process(shardIndex, shardTotal);

    XxlJobHelper.handleSuccess();
}

分片查询数据示例:

select field1, field2 
from table_name 
where ... 
    and mod(id, #{shardTotal}) = #{shardIndex} 
order by id limit #{rows};

进一步思考

  1. 如果需要更大的并发量,需要有大于应用节点数量的任务并行,如何处理?

    两种思路:

    • 通过任务参数传入一个并发数,单个节点在处理任务时,将查询到的数据按这个数字进行再分片,交由线程池并行处理;
    • 配置 M 个定时任务,指定相同的 JobHandler,给它们编号 0、1、2...M,并将定时任务编号和 M 这两个数,由任务参数传入,定时任务逻辑里,先根据分片参数、定时任务编号、M,重新计算出新的分片参数,如 分片序号 = (分片序号 * M) + 定时任务编号分片总数 = 分片总数 * M,再查询数据并处理。
  2. 如果有可能频繁调整任务执行逻辑,包括可能要新增任务参数等,而不想重启服务器,如何解决?

    可以考虑使用 XXL-JOB 的「GLUE模式」任务,能够在线编辑和更新定时任务执行逻辑。

参考

本篇文章由一文多发平台ArtiPub自动发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容