LinkedList的局限

java.util.LinkedList是双向链表,这个大家都知道,比如Java的基础面试题喜欢问ArrayList和LinkedList的区别,在什么场景下用。大家都会说LinkedList随机增删多的场景比较合适,而ArrayList的随机访问多的场景比较合适。更进一步,我有时候会问,LinkedList.remove(Object)方法的时间复杂度是什么?有的人回答对了,有的人回答错了。回答错的应该是没有读过源码。

理论上说,双向链表的删除的时间复杂度是O(1),你只需要将要删除的节点的前节点和后节点相连,然后将要删除的节点的前节点和后节点置为null即可,


[java]

//伪代码

node.prev.next=node.next;

node.next.prev=node.prev;

node.prev=node.next=null;

[/java]

这个操作的时间复杂度可以认为是O(1)级别的。但是LinkedList的实现是一个通用的数据结构,因此没有暴露内部的节点Entry对象,remove(Object)传入的Object其实是节点存储的value,这里还需要一个查找过程:

[java]

public boolean remove(Object o) {

if (o==null) {

for (Entry e = header.next; e != header; e = e.next) {

if (e.element==null) {

remove(e);

return true;

}

}

} else {

//查找节点Entry

for (Entry e = header.next; e != header; e = e.next) {

if (o.equals(e.element)) {

//删除节点

remove(e);

return true;

}

}

}

return false;

}

[/java]

删除节点的操作就是刚才伪代码描述的:

[java]

private E remove(Entry e) {

E result = e.element;

e.previous.next = e.next;

e.next.previous = e.previous;

e.next = e.previous = null;

e.element = null;

size–;

modCount++;

return result;

}

[/java]

因此,显然,LinkedList.remove(Object)方法的时间复杂度是O(n)+O(1),结果仍然是O(n)的时间复杂度,而非推测的O(1)复杂度。最坏情况下要删除的元素是最后一个,你都要比较N-1次才能找到要删除的元素。

既然如此,说LinkedList适合随机删减有个前提,链表的大小不能太大,如果链表元素非常多,调用remove(Object)去删除一个元素的效率肯定有影响,一个简单测试,插入100万数据,随机删除1000个元素:


[java]

final List list = new LinkedList();

final int count = 1000000;

for (int i = 0; i < count; i++) {

list.add(i);

}

final Random rand=new Random();

long start=System.nanoTime();

for(int i=0;i<1000;i++){

//这里要强制转型为Integer,否则调用的是remove(int)

list.remove((Integer)rand.nextInt(count));

}

System.out.println((System.nanoTime()-start)/Math.pow(10, 9));

[/java]

在我的机器上耗时近9.5秒,删除1000个元素耗时9.5秒,是不是很恐怖?注意到上面的注释,产生的随机数强制转为Integer对象,否则调用的是 remove(int)方法,而非remove(Object)。如果我们调用remove(int)根据索引来删除:

[java]

for(int i=0;i<1000;i++){

list.remove(rand.nextInt(list.size()-1));

}

[/java]

随机数范围要递减,防止数组越界,换成remove(int)效率提高不少,但是仍然需要2.2秒左右(包括了随机数产生开销)。这是因为 remove(int)的实现很有技巧,它首先判断索引位置在链表的前半部分还是后半部分,如果是前半部分则从head往前查找,如果在后半部分,则从 head往后查找(LinkedList的实现是一个环):

[java]

Entry e = header;

if (index < (size >> 1)) {

//前一半,往前找

for (int i = 0; i <= index; i++)

e = e.next;

} else {

//后一半,往后找

for (int i = size; i > index; i–)

e = e.previous;

}

[/java]

最坏情况下要删除的节点在中点左右,查找的次数仍然达到n/2次,但是注意到这里没有比较的开销,并且比remove(Object)最坏情况下n次查找还是好很多。


总结下,LinkedList的两个remove方法,remove(Object)和remove(int)的时间复杂度都是O(n),在链表元素很多并且没有索引可用的情况下,LinkedList也并不适合做随机增删元素。在对性能特别敏感的场景下,还是需要自己实现专用的双向链表结构,真正实现 O(1)级别的随机增删。更进一步,jdk5引入的ConcurrentLinkedQueue是一个非阻塞的线程安全的双向队列实现,同样有本文提到的问题,有兴趣可以测试一下在大量元素情况下的并发随机增删,效率跟自己实现的特定类型的线程安全的链表差距是惊人的。

题外,ArrayList比LinkedList更不适合随机增删的原因是多了一个数组移动的动作,假设你删除的元素在m,那么除了要查找m次之外,还需要往前移动n-m-1个元素。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容