MMKV for Android 多进程设计与实现(二)

IPC 选型

说到 IPC,首要的问题就是架构选型,不同的架构效果大相径庭。

CS 架构 vs 去中心化架构

Android 平台第一个想到的就是 ContentProvider:一个单独进程管理数据,数据同步不易出错,简单好用易上手。然而它的问题也很明显,就是一个字:启动慢,访问也慢。这个可以说是 Android 下基于 Binder 的 CS 架构组件的通用痛点。至于其他的 CS 架构,例如经典的 socket、PIPE、message queue,因为要至少 2 次的内存拷贝,就更加慢了。

MMKV 追求的是极致的访问速度,我们要尽可能地避免进程间通信,CS 架构是不可取的。再考虑到 MMKV 底层使用 mmap 实现,采用去中心化的架构是很自然的选择。我们只需要将文件 mmap 到每个访问进程的内存空间,加上合适的进程锁,再处理好数据的同步,就能够实现多进程并发访问。

挑选进程锁

然而去中心化的架构实现起来并不简单,Android 是个阉割版的 Linux,IPC 组件的支持比较残缺。例如,说到进程锁第一个想到的就是 pthread 库的 pthread_mutex,创建于共享内存的 pthread_mutex 是可以用作进程锁的,然而 Android 版的 pthread_mutex 并不保证robust,亦即对 pthread_mutex 加了锁的进程被 kill,系统不会进行清理工作,这个锁会一直存在下去,那么其他等锁的进程就会永远饿死。其他的 IPC 组件,例如信号量、条件变量,也有同样问题,Android 为了能够尽快关闭进程,真是无所不用其极。

找了一圈,能够保证 robust 的,只有已打开的文件描述符,以及基于文件描述符的文件锁和 Binder 组件的死亡通知(是的,Binder 也是依赖这个清理机制运作,打开的文件是 /dev/binder)。

我们有两个选择:

  • 文件锁,优点是天然 robust,缺点是不支持递归加锁,也不支持读写锁升级/降级,需要自行实现。
  • pthread_mutex,优点是 pthread 库支持递归加锁,也支持读写锁升级/降级,缺点是不 robust,需要自行清理。

关于 mutex 清理,有个可能的方案是基于 Binder 死亡通知进行清理:A、B进程相互注册对方的死亡通知,在对方死亡的时候进行清理。但有个比较棘手的场景:只有 A 进程存在,那么他的死亡通知就没人处理,留下一个永远加锁的 mutex。Binder 规定死亡通知不能本进程自行处理,必须由其他进程处理,所以这个问题不好解决。

综合各种考虑,我们先将文件锁作为一个简单的互斥锁,进行 MMKV 的多进程开发,稍后再回头解决递归锁和读写锁升级/降级的问题。

多进程实现细节

首先我们简单回顾一下 MMKV 原来的逻辑。MMKV 本质上是将文件 mmap 到内存块中,将新增的 key-value 统统 append 到内存中;到达边界后,进行重整回写以腾出空间,空间还是不够的话,就 double 内存空间;对于内存文件中可能存在的重复键值,MMKV 只选用最后写入的作为有效键值。那么其他进程为了保持数据一致,就需要处理这三种情况:写指针增长、内存重整、内存增长。但首先还得解决一个问题:怎么让其他进程感知这三种情况?

状态同步

  • 写指针的同步
    我们可以在每个进程内部缓存自己的写指针,然后在写入键值的同时,还要把最新的写指针位置也写到 mmap 内存中;这样每个进程只需要对比一下缓存的指针与 mmap 内存的写指针,如果不一样,就说明其他进程进行了写操作。事实上 MMKV 原本就在文件头部保存了有效内存的大小,这个数值刚好就是写指针的内存偏移量,我们可以重用这个数值来校对写指针。

  • 内存重整的感知
    考虑使用一个单调递增的序列号,每次发生内存重整,就将序列号递增。将这个序列号也放到 mmap 内存中,每个进程内部也缓存一份,只需要对比序列号是否一致,就能够知道其他进程是否触发了内存重整。

  • 内存增长的感知
    事实上 MMKV 在内存增长之前,会先尝试通过内存重整来腾出空间,重整后还不够空间才申请新的内存。所以内存增长可以跟内存重整一样处理。至于新的内存大小,可以通过查询文件大小来获得,无需在 mmap 内存另外存放。

状态同步逻辑用伪码表达大概是这个样子:

void checkLoadData() {
    if (m_sequence != mmapSequence()) {
        m_sequence = mmapSequence();
        if (m_size != fileSize()) {
            m_size = fileSize();
            // 处理内存增长
        } else {
            // 处理内存重整
        }
    } else if (m_actualSize != mmapActualSize()) {
        auto lastPosition = m_actualSize;
        m_actualSize = mmapActualSize();
        // 处理写指针增长
    } else {
        // 什么也没发生
        return;
    }
}

写指针增长

当一个进程发现 mmap 写指针增长,就意味着其他进程写入了新键值。这些新的键值都 append 在原有写指针后面,可能跟前面的 key 重复,也可能是全新的 key,而原写指针前面的键值都是有效的。那么我们就要把这些新键值都读出来,插入或替换原有键值,并将写指针同步到最新位置。

    auto lastPosition = m_actualSize;
    m_actualSize = mmapActualSize();
    // 处理写指针增长
    auto bufferSize = m_actualSize - lastPosition;
    auto buffer = Buffer(lastPosition, bufferSize);
    map<string, Buffer> dictionary = decodeMap(buffer);
    for (auto& itr : dictionary) {
        // m_cache 还是有效的
        m_cache[itr.first] = itr.second;
    }

内存重整

当一个进程发现内存被重整了,就意味着原写指针前面的键值全部失效,那么最简单的做法是全部抛弃掉,从头开始重新加载一遍。

    // 处理内存重整
    m_actualSize = mmapActualSize();
    auto buffer = Buffer(0, m_actualSize);
    m_cache = decodeMap(buffer);

内存增长

正如前文所述,发生内存增长的时候,必然已经先发生了内存重整,那么原写指针前面的键值也是统统失效,处理逻辑跟内存重整一样。

文件锁

到这里我们已经完成了数据的多进程同步工作,是时候回头处理锁事了,亦即前面提到的递归锁和锁升级/降级。

  • 递归锁
    意思是如果一个进程/线程已经拥有了锁,那么后续的加锁操作不会导致卡死,并且解锁也不会导致外层的锁被解掉。对于文件锁来说,前者是满足的,后者则不然。因为文件锁是状态锁,没有计数器,无论加了多少次锁,一个解锁操作就全解掉。只要用到子函数,就非常需要递归锁。

  • 锁升级/降级
    锁升级是指将已经持有的共享锁,升级为互斥锁,亦即将读锁升级为写锁;锁降级则是反过来。文件锁支持锁升级,但是容易死锁:假如 A、B 进程都持有了读锁,现在都想升级到写锁,就会陷入相互等待的困境,发生死锁。另外,由于文件锁不支持递归锁,也导致了锁降级无法进行,一降就降到没有锁。

为了解决这两个难题,需要对文件锁进行封装,增加读锁、写锁计数器。处理逻辑如下表:

读锁计数器 写锁计数器 加读锁 加写锁 解读锁 解写锁
0 0 加读锁 加写锁 - -
0 1 +1 +1 - 解写锁
0 N +1 +1 - -1
1 0 +1 解读锁再加写锁 解读锁 -
1 1 +1 +1 -1 加读锁
1 N +1 +1 -1 -1
N 0 +1 解读锁再加写锁 -1 -
N 1 +1 +1 -1 加读锁
N N +1 +1 -1 -1

需要注意的地方有两点:

  • 加写锁时,如果当前已经持有读锁,那么先尝试加写锁,try_lock 失败说明其他进程持有了读锁,我们需要先将自己的读锁释放掉,再进行加写锁操作,以避免死锁的发生。
  • 解写锁时,假如之前曾经持有读锁,那么我们不能直接释放掉写锁,这样会导致读锁也解了。我们应该加一个读锁,将锁降级。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,681评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,710评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,623评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,202评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,232评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,368评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,795评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,461评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,647评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,476评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,525评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,226评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,785评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,857评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,090评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,647评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,215评论 2 341

推荐阅读更多精彩内容

  • 前言:由于知识点多,分了多个记录。 MMKV( 一) 了解原理[https://www.jianshu.com/p...
    zcwfeng阅读 1,477评论 2 1
  • POSIX线程 POSIX,全称为可移植性操作系统接口。它包括了系统应用程序接口(简称API)。该标准的目的是定义...
    蒋斌文阅读 954评论 0 0
  • MMKV的介绍 MMKV 是基于 mmap 内存映射 的 key-value 组件,底层序列化/反序列化使用 p...
    cname_1阅读 9,601评论 0 3
  • 前言 好久没有更新常用的第三方库了。让我们来聊聊MMKV这个常用的第三方库。MMKV这个库是做什么的呢?他本质上的...
    yjy239阅读 11,015评论 7 13
  • SharedPreference 数据格式 XML格式保存,使用Pull解析 初始化 创建SharedPrefer...
    Archer_J阅读 1,385评论 2 2