自学爬虫框架scrapy,爬取当当网-图书排行榜练手
-
目标:爬取当当网-图书畅销榜中的图书数据,要求各种条件的数据都要有。
- spider
# -*- coding: utf-8 -*-
import scrapy
from dd_book.items import DdBookItem
from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
class DdbookSpider(scrapy.Spider):
name = 'ddbook'
start_urls = ['http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-24hours-0-0-1-1']
def __init__(self):
self.driver = webdriver.PhantomJS()
self.item = DdBookItem()
def parse(self, response):
'''
该方法用于从start_urls定义的初始url中获取需要爬取的几个不同条件的url
条件分为
近24小时,近七日,近30日
http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-24hours-0-0-1-1
http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-recent7-0-0-1-1
http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-recent30-0-0-1-1
今年1月,2月...本月
往年:2015,2016,2017,2018
条件不同,url不同,但是有规律
每种条件的url不同
'''
self.driver.get(response.url)
wait = WebDriverWait(self.driver,3)
wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, '.bang_list_date')))
p_lis = response.css('.bang_list_date p')
self.item = DdBookItem()
# 分析页面,获取不同的条件url
for p in p_lis:
a_lis = p.css('span.date_list a')
for x in a_lis:
url = x.css('a::attr(href)').extract_first()
arr = url.split('/')
res = (arr[len(arr) - 1]).split('-')
self.item['cate'] = res[1] # 获取分类信息,存储时方便区分
self.item['category'] = arr[4] # #获取分类信息,存储时方便区分
yield scrapy.Request(url, meta={'item':self.item},callback=self.parse_condition_page)
def parse_condition_page(self, response):
'''
该方法用于从一个特定的条件分类中执行翻页操作
例如:条件为近30日下有25页数据
'''
self.driver.get(response.url)
wait = WebDriverWait(self.driver,3)
wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, '.bang_list_box .bang_list li')))
maxpage = int(response.xpath('//li[@class="next"]/preceding-sibling::li[1]/a/text()').extract_first())
for i in range(1,maxpage+1):
url = response.url[0:-1] + str(i)
yield scrapy.Request(url, meta={'item':response.meta['item']}, callback=self.parse_book_infos)
def parse_book_infos(self, response):
'''
该方法用于进入到每本图书的图书详情页
'''
lis = response.css('.bang_list_box ul.bang_list li')
for li in lis:
full_url = li.css('div.pic a::attr(href)').extract_first()
yield scrapy.Request(full_url, meta={'item':response.meta['item']}, callback=self.get_bookinfos)
def get_bookinfos(self, response):
'''
该方法用于解析页面,获取需要的信息
'''
item = response.meta['item']
item['cate'] = item['cate']
item['category'] = item['category']
item['bookname'] = response.css('.sale_box_left h1::attr(title)').extract_first()
item['author'] = response.css('.messbox_info span#author a:nth-of-type(1)::text').extract_first()
item['publisher'] = response.css('.messbox_info span[ddt-area="003"] a::text').extract_first()
publishtime = response.css('.messbox_info span[ddt-area="003"]+span.t1::text').extract_first()
item['publishtime'] = publishtime.strip()[5:] if publishtime != None else ''
price = response.css('#dd-price::text').extract()
item['price'] = price[1].strip()
transfer = response.css('.messbox_info span#author a:nth-of-type(2)::text').extract_first()
item['transfer'] = transfer if transfer != None else ''
yield item
- settings
BOT_NAME = 'dd_book'
SPIDER_MODULES = ['dd_book.spiders']
NEWSPIDER_MODULE = 'dd_book.spiders'
AUTOTHROTTLE_START_DELAY = 3
AUTOTHROTTLE_ENABLED = True
MONGO_URI = 'localhost'
MONGO_DB = 'dangdangbook'
ITEM_PIPELINES = {
'dd_book.pipelines.MongoPipeline' : 300
}
ROBOTSTXT_OBEY = False
- Pipelines
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
class DdBookPipeline(object):
def process_item(self, item, spider):
return item
class MongoPipeline(object):
def __init__(self,mongo_uri, mongo_db):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db
@classmethod
def from_crawler(cls, crawler):
return cls(
mongo_uri = crawler.settings.get('MONGO_URI'),
mongo_db = crawler.settings.get('MONGO_DB')
)
def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db]
def process_item(self,item, spider):
name = 'dangdang_book'
self.db[name].insert(dict(item))
return item
def close_spider(self, spider):
self.client.close()
- items
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class DdBookItem(scrapy.Item):
bookname = scrapy.Field()
author = scrapy.Field()
publisher = scrapy.Field()
publishtime = scrapy.Field()
rating_list = scrapy.Field()
price = scrapy.Field()
transfer = scrapy.Field()
image = scrapy.Field()
cate = scrapy.Field()
category = scrapy.Field()
-
mongo数据
问题:爬取过程中没有报错,但是部分数据丢失,按照条件算起来应该有5000+的数据,但是最后统计只有1590条数据被抓取到
- 现在不知道原因到底是什么,比较懊恼,哪位看官可以帮忙解答一下?