留存分析3500字干货,方法+案例+参考代码

文 / Janie Liu
公众号同名《溜溜笔记说》
我是一个专分享干货的号主

前言

Tableau的本质还是辅助分析、辅助工作,分析思维不可少。所以在分享Tableau技能之外,也会分享些有关分析技能的内容,统一更新入“Janie碎谈”模块中。

这篇文章是我花了好几个晚上认认真真写的,自己编造的数据,自己画的图,自己写的代码。一方面写的过程中会促使我进入更深层次的思考,边改进边学习边进步;另一方面独乐乐不如众乐乐,分享出来大家一起进步,顺便也帮我指出不足。

网上有关留存的文章很多,这篇不敢说是最全的,但最起码是较全的。由于上班加带娃,又要坚持原创,又要精细的准备每一篇干货,所以大概一周一更。如有做的不足的地方,请于后台留言,督促我改进,以分享更有价值的干货。

在这个用户为大的互联网世界中,我们一起发现更多有意思的点......

目录
  1. 互联网企业面临的留存问题

  2. 什么是留存分析

  3. 留存分析常用口径

  4. 留存分析的适用场景

  5. 留存分析参考代码

  6. 留存下降的可能性原因

  7. 留存分析方法

  8. 案例实攻

1 互联网企业面临的留存问题
  • 流量红利见顶、拉新成本高

在极易同质化的今天,流量竞争着实激烈,提高用户留存的重要性不言而喻,且存量用户的获客成本远远低于拉新成本。

  • 新用户较易流失

企业大规模投广告、做活动,高额支出锁不住新用户,长期可持续发展有些无力,只顾眼前利益治标不治本。

2 什么是留存分析

留存率:某日用户数在第N日仍启动该App的用户比例,留存分析即分析用户随时间变化的活跃情况。获取用户只是第一步,留住用户才是所有产品最终目标。

可以理解为:由初期的摇摆用户转化为忠诚&稳定用户的过程。留存率越高,说明用户对产品越有强烈的依赖感。

可分为三个阶段:

  • 初期:新用户刚注册,用户留存下降较快,需快速让用户感受到产品核心价值。

  • 中期:新用户沉淀下来,形成活跃用户。此时需分析活跃留存,加强核心功能,培养用户对产品的使用习惯。

  • 后期:思考产品核心价值,做好产品迭代与优化。

从时间维度划分:

常见的的有:次日留存、3日留存、7日留存、30日留存、周留存、月留存

从用户维度划分:

常见的的有:新用户留存、活跃留存

图解如下:

图1
3 留存分析常用口径

以新用户留存为例

次日留存率=(某日新增的用户中,在注册的第2天还进行登录的用户数)/ 该日新增用户数

3日留存率=(某日新增用户中,在注册的第3天还进行登录的用户数)/ 该日新增用户数

7日留存率=(某日新增的用户中,在注册的第7天还进行登录的用户数)/ 该日新增用户数

30日留存率=(某日新增的用户中,在注册的第30天还进行登录的用户数)/ 该日新增用户数

1周后留存率=(某周新增的用户中,在注册的第2周还进行登录的用户数)/ 该周新增用户数

2周后留存率=(某周新增的用户中,在注册的第3周还进行登录的用户数)/ 该周新增用户数

1月后留存率=(某月新增的用户中,在注册的第2月还进行登录的用户数)/ 该月新增用户数

2月后留存率=(某月新增的用户中,在注册的第3月还进行登录的用户数)/ 该月新增用户数

以活跃留存为例

次日留存率=(某日登录的用户中,在第2天还进行登录的用户数)/ 该日登录用户数

3日留存率=(某日登录用户中,在第3天还进行登录的用户数)/ 该日登录用户数

7日留存率=(某日登录的用户中,在第7天还进行登录的用户数)/ 该日登录用户数

30日留存率=(某日登录的用户中,在第30天还进行登录的用户数)/ 该日登录用户数

1周后留存率=(某周登录的用户中,在第2周还进行登录的用户数)/ 该周登录用户数

2周后留存率=(某周登录的用户中,在第3周还进行登录的用户数)/ 该周登录用户数

1月后留存率=(某月登录的用户中,在第2月还进行登录的用户数)/ 该月登录用户数

2月后留存率=(某月登录的用户中,在第3月还进行登录的用户数)/ 该月登录用户数

4 留存分析的适用场景

日留存率

  • 快速判断产品是否迎合市场需求,比如新手对产品的UI设计、功能设置、新手引导等的体验是否满意,是否需做调整。

  • 快速判断用户粘性,比如用户是否更易受促销活动的影响等等。

周留存率

  • 判断用户忠诚度,用户此时对产品基本已有完整的体验。一整套流程体验下来,继续访问的用户可判断为潜在忠诚用户。

  • 分析用户再次访问的原因,找出产品最能巩固用户的点,且参考此点以一贯之,拓展应用到更多的用户身上,促使更多的用户留下来。

月留存率

  • 评估迭代与优化的效果。砍掉留存率低的产品功能,进行迭代优化。
5 留存分析参考代码

有些互联网公司面试会出留存SQL题型,该代码仅供参考。

图2

代码运行结果

图3

语法环境:SparkSql或Impala,其他环境也可以,只是个别函数会略有差别,替换个别函数即可,无需更改代码结构。

参考代码如下:

--以a表日期作为主体
select 
t.date_a
,t.date_b
,t.diff_ab
,count(distinct t.user) as user_num
from
( 
    --a、b两段代码一模一样,join之后取二者日期差值
    select 
    a.login_date as date_a
    ,b.login_date as date_b
    ,a.user
    ,datediff(b.login_date,a.login_date) as diff_ab
    from
    (
        --a段代码
        SELECT 
        login_date
        ,user
        from dwd.user_login 
        where login_date>='2021-08-01'and login_date<=date_sub(to_date(now()),1)
    )a
    inner join
    (
        --b段代码
        SELECT 
        login_date
        ,user
        from dwd.user_login 
        where login_date>='2021-08-01'and login_date<=date_sub(to_date(now()),1)
    )b on a.user=b.user
)t
group by 1,2,3
having t.diff_ab>=0
6 留存分析下降的可能性原因

新用户留存下降

  • 新用户并未快速的感受到产品的核心价值。

  • 新手引导模块体验交差

  • 新用户羊毛党居多

  • 界面UI设计影响使用感

  • 产品功能体验较差

  • ......

老用户留存下降

  • 产品迭代功能致使用户体验变差

  • 产品迭代周期较长,用户丧失新鲜感

  • 受竞品影响

  • 未促使用户对产品形成习惯

  • 连续打卡签到送红包模块优惠力度较小,无坚持意义

  • 广告推送较多

  • 客服服务响应较慢、服务较差

  • 无关推送

  • 产品bug较多

  • 受促销活动影响较大

  • ......

7 留存分析方法
image.png

其中产品功能分析:

目的:找出对留存最有价值的功能&最没价值的功能,便于后期迭代优化。

  1. 卓越功能:建议侧重优化用户体验。

  2. 大众功能:重中之重,建议反思该功能的长期价值与实用性

  3. 小众功能:建议保留该功能,但无需过多投入精力

  4. 弱势功能:建议考虑是否砍掉

image.png
8 案例实攻

案例一

该图是我在ppt上加工出来的,选取了两日来对比。

image.png

解析:

2021年5月1日注册的新用户在注册的第7日留存率趋向于平稳,此时留存率60%;2021年5月2日注册的新用户在注册的第7日留存率趋向于平稳,此时留存率20%;2日注册的用户稳定留存率较1日差。

改进思路:

应使得趋向于平稳时的留存率尽可能提高,即平稳的这段线尽量往上提。

案例二

数据纯属个人虚构,实际分析时建议多扩展日期,该图重在解析分析方法。

该表留存率:(某新增的用户中,在第N天还进行登录的用户数)/ 该日新增用户数

image.png

以8月1日的新增用户留存为例

image.png
  • 新手探索期:单纯靠大额优惠吸引的用户会之间流失,产品价值未达到用户预期。

  • 习惯养成期:产品功能&实用性未促使用户养成使用习惯。

  • 活跃用户期:真正留下来的忠实用户。

解析:

  1. 新用户次留骤减60%:没有使得用户迅速发现产品价值

  2. 整体留存率于第10日趋向于平稳,留存率稳定于11%左右:说明8月1日的新增用户中只有11%左右发展成了忠实用户。

  3. 3留&7留出现留存率增长现象(注意:留存率并不会呈现持续下降情况),进一步定位原因,在8月3日与8月7日是否进行了促销活动?

案例三

image.png

解析:

  1. 表格中以8月6日注册用户的次留(71%)为起始点,8月1日注册用户的7留(34%)为结束点,二者形成对角线,纵向对比数据,颜色颜色部分留存率都比较高。首先需要确认8月7日这天运营是否做了动作?比如:该日做了促销活动、或者其他特殊活动?因为8月7日正好对应的是8月6日的次留,8月5日的3留......8月1日的7留。

  2. 表格中8月9日的次留是20%,远低于其他日次留,且后续留存也较其他日偏低,警惕羊毛党。

历史推荐

分析笔记
销量预测模型案例实战
如何做好用户生命周期价值分析(LTV

生活笔记
2021年|过去不回头,余生不将就

Tableau笔记
会计转行数分,我开启了Tableau探索之路
用Tableau实现目标跟踪的6种方式
用Tableau制作10种漂亮的饼图
用Tableau制作10种漂亮的柱形图
用Tableau制作10种漂亮的折线图
用Tableau实现目标跟踪的6种方式
用Tableau制作导出图像按钮
用Tableau制作漂亮的类别树图
Tableau制作高级版Bump Chart图
Tableau制作Bump Chart图及拓展变形
Tableau中如何添加自定义形状
用Tableau做个别具特色的日历图
用Tableau制作瀑布图及拓展延伸
用自定义数字格式创建高端表格
Tableau新手入门

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容