(十二)LLE局部线性嵌入降维算法

一. 前言

1. LLE

局部线性嵌入(Locally Linear Embedding,以下简称LLE)是非常重要的降维方法。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征(保持原有拓扑结构),由于LLE在降维时保持了样本的局部特征,它广泛的用于图像识别,高维数据可视化等领域。LLE是非线性降维技术,可以说是流形学习方法最经典的算法之一。很多后续的流形学习、降维方法都与LLE有密切联系。
但是LLE在有些情况下也并不适用,如果数据分布在整个封闭的球面上,LLE则不能将它映射到二维空间,且不能保持原有的数据流形。那么我们在处理数据中,首先假设数据不是分布在闭合的球面或者椭球面上。

LLE降维

2. 流形学习

传统的机器学习方法中,数据点和数据点之间的距离和映射函数都是定义在欧式空间中的,然而在实际情况中,这些数据点可能不是分布在欧式空间中的(比如黎曼空间),因此传统欧式空间的度量难以用于真实世界的非线性数据,从而需要对数据的分布引入新的假设。

  • 什么是流形?
    流形(manifold)是一般几何对象的总称,是局部具有欧式空间性质的空间,包括各种纬度的曲线曲面,例如球体、弯曲的平面等。流形的局部和欧式空间是同构的,可以说流形是线性子空间的一种非线性推广。
    数学意义上的流形比较抽象,不过我们可以认为LLE中的流形是一个不闭合的曲面。我们要降维的数据就分布在这个曲面上,且分布比较稠密。一个形象的流形降维过程如下图。我们有一块卷起来的布,我们希望将其展开到一个二维平面,我们希望展开后的布能够在局部保持布结构的特征,其实也就是将其展开的过程,就想两个人将其拉开一样。
  • 流形与欧式空间
    流形上的点本身是没有坐标的,所以为了表示这些数据点,我们把流形嵌入到外围欧式空间,用外围空间上的坐标来表示流形上的点。例如下面三元组表示一个球,它是一个2维曲面,即球面上只有两个自由度(只由两个变量θ和φ生成的),但我们一般将它嵌入到三维空间,用xyz坐标来表示这个球面。

    需要注意的是,流形并不需要依靠嵌入在一个“外围空间”而存在,只是因为高维的数据对于我们这些可怜的低维生物来说总是很难以想像,所以最直观的方法就是嵌入到3维以下的欧式空间。
  • 流形降维
    流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的。由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示。所以直观上来讲,一个流形好比是一个d维的空间,在一个m维的空间中(m > d)被扭曲之后的结果。需要注意的是流形并不是一个形状,而是一个空间。
    假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。
  • 流形学习的一般过程
    流形学习方法具有一些共同的特征:
    1.构造流形上样本点的局部邻域结构
    2.用这些局部邻域结构来将样本点全局的映射到一个低维空间。
    不同流形学习之间的不同之处主要是在于构造的局部邻域结构不同以及利用这些局部邻域结构来构造全局的低维嵌入方法的不同。

二. LLE算法

LLE算法认为每一个数据点都可以由其近邻点的线性加权组合构造得到。算法的主要步骤分为三步:

  1. 寻找每个样本点的k个近邻点;
    流形学习的局部区域具有欧式空间的性质,那么在LLE中就假设某个点xi坐标可以由它周围的K个点的坐标线性组合求出。这个K是人为设定的,具体情况具体分析。需要注意,当k取值较小时,算法不能将数据很好地映射到低维空间,因为当近邻个数太少时,不能很好地反映数据的拓扑结构;但若k取值太大,不同类型的数据开始相互重叠,说明选取的近邻个数太多则不能反映数据的流形信息

  2. 由每个样本点的近邻点计算出该样本点的局部重建权值矩阵;

  3. 由该样本点的局部重建权值矩阵和其近邻点计算出该样本点的输出值。

具体推导参考这个大佬的文章:写的很细致。
https://www.cnblogs.com/pinard/p/6266408.html




参考:
https://blog.csdn.net/qq_16234613/article/details/79689681

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,332评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,930评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,204评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,348评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,356评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,447评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,862评论 3 394
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,516评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,710评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,518评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,582评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,295评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,848评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,881评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,121评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,737评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,280评论 2 341

推荐阅读更多精彩内容