《Scikit-Learn与TensorFlow机器学习实用指南》第13章 卷积神经网络

第13章 卷积神经网络

来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目

译者:@akonwang @WilsonQu

校对: @飞龙

​尽管 IBM 的深蓝超级计算机在1996年击败了国际象棋世界冠军 Garry Kasparvo,直到近几年计算机都不能可靠地完成一些看起来较为复杂的任务,比如判别照片中是否有狗以及识别语音。为什么这些任务对于人类而言如此简单?答案在于感知主要发生在我们意识领域之外,在我们大脑中的专门视觉,听觉和其他感官模块内。当感官信息达到我们的意识时,它已经被装饰了高级特征;例如,当你看着一只可爱的小狗的照片时,你不能选择不看这只小狗,或不注意它的可爱。你也不能解释你如何认出这是一只可爱的小狗,这对你来说很明显。因此,我们不能相信我们的主观经验:感知并不是微不足道的,理解它我们必须看看感官模块是如何工作的。

​卷积神经网络(CNN)是从大脑视觉皮层的研究中出现的,自 20 世纪 80 年代以来它们一直用于图像识别。在过去的几年里,由于计算能力的增加,可用训练数据的数量以及第 11 章介绍的训练深度网络的技巧,CNN 致力于在某些复杂的视觉任务中做出超出人类的表现。他们使图像搜索服务,自动驾驶汽车,视频自动分类系统等变得强大。此外,CNN 并不局限于视觉感知:它们在其他任务中也很成功,如语音识别或自然语言处理(NLP); 然而,我们现在将专注于视觉应用。

​在本章中,我们将介绍 CNN 的来源,构建它们模块的外观以及如何使用 TensorFlow 实现它们。然后我们将介绍一些最好的 CNN 架构。

阅读全文

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • 姓名:尤学强 学号:17101223374 转载自:http://mp.weixin.qq.com/s/C6cID...
    51fb659a6d6f阅读 3,525评论 0 16
  • 本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入...
    imGeek阅读 2,659评论 1 33
  • 我们都知道,神经网络是由一层一层的神经元组合而成的,每个层之间可以通过不同的方式来连接起来以构成不同结构的神经网络...
    1桶阅读 5,441评论 0 2
  • 你所说的和做的,只是别人故事里的一个情节。这话你能看到,却不会有人说给你听。真的有人脑袋比钟表还精密,愚钝者无法想...
    君子包阅读 217评论 0 2
  • 今天是农历正月初七, 我再一次拔打你的电话。 问你三年前欠我的工资,什么时候给我? 你说,今天你进城,顺便给我送来...
    歪才大白话阅读 557评论 3 2