第13章 卷积神经网络
校对: @飞龙
尽管 IBM 的深蓝超级计算机在1996年击败了国际象棋世界冠军 Garry Kasparvo,直到近几年计算机都不能可靠地完成一些看起来较为复杂的任务,比如判别照片中是否有狗以及识别语音。为什么这些任务对于人类而言如此简单?答案在于感知主要发生在我们意识领域之外,在我们大脑中的专门视觉,听觉和其他感官模块内。当感官信息达到我们的意识时,它已经被装饰了高级特征;例如,当你看着一只可爱的小狗的照片时,你不能选择不看这只小狗,或不注意它的可爱。你也不能解释你如何认出这是一只可爱的小狗,这对你来说很明显。因此,我们不能相信我们的主观经验:感知并不是微不足道的,理解它我们必须看看感官模块是如何工作的。
卷积神经网络(CNN)是从大脑视觉皮层的研究中出现的,自 20 世纪 80 年代以来它们一直用于图像识别。在过去的几年里,由于计算能力的增加,可用训练数据的数量以及第 11 章介绍的训练深度网络的技巧,CNN 致力于在某些复杂的视觉任务中做出超出人类的表现。他们使图像搜索服务,自动驾驶汽车,视频自动分类系统等变得强大。此外,CNN 并不局限于视觉感知:它们在其他任务中也很成功,如语音识别或自然语言处理(NLP); 然而,我们现在将专注于视觉应用。
在本章中,我们将介绍 CNN 的来源,构建它们模块的外观以及如何使用 TensorFlow 实现它们。然后我们将介绍一些最好的 CNN 架构。