Python polars学习-08 分类数据处理

背景

polars学习系列文章,第8篇 分类数据处理(Categorical data)

该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习
仓库地址:https://github.com/DataShare-duo/polars_learn

小编运行环境

import sys

print('python 版本:',sys.version.split('|')[0])
#python 版本: 3.11.9

import polars as pl

print("polars 版本:",pl.__version__)
#polars 版本: 0.20.22

分类数据 Categorical data

分类数据就是平时在数据库中能进行编码的数据,比如:性别、年龄、国家、城市、职业 等等,可以对这些数据进行编码,可以节省存储空间

Polars 支持两种不同的数据类型来处理分类数据:EnumCategorical

  • 当类别预先已知时使用 Enum,需要提前提供所有类别
  • 当不知道类别或类别不固定时,可以使用 Categorical
enum_dtype = pl.Enum(["Polar", "Panda", "Brown"])
enum_series = pl.Series(
    ["Polar", "Panda", "Brown", "Brown", "Polar"], 
    dtype=enum_dtype)

cat_series = pl.Series(
    ["Polar", "Panda", "Brown", "Brown", "Polar"], 
    dtype=pl.Categorical
)

Categorical 类型

Categorical 相对比较灵活,不用提前获取所有的类别,当有新类别时,会自动进行编码

当对来自2个不同的 Categorical 类别列直接进行拼接时,以下这种方式会比较慢,polars 是根据字符串出现的先后顺序进行编码,不同的字符串在不同的序列里面编码可能不一样,直接合并的话全局会再进行一次编码,速度会比较慢:

cat_series = pl.Series(
    ["Polar", "Panda", "Brown", "Brown", "Polar"], dtype=pl.Categorical
)
cat2_series = pl.Series(
    ["Panda", "Brown", "Brown", "Polar", "Polar"], dtype=pl.Categorical
)

#CategoricalRemappingWarning: Local categoricals have different encodings, 
#expensive re-encoding is done to perform this merge operation. 
#Consider using a StringCache or an Enum type if the categories are known in advance
print(cat_series.append(cat2_series))

可以通过使用 polars 提供的全局字符缓存 StringCache,来提升数据处理效率

with pl.StringCache():
    cat_series = pl.Series(
        ["Polar", "Panda", "Brown", "Brown", "Polar"], dtype=pl.Categorical
    )
    cat2_series = pl.Series(
        ["Panda", "Brown", "Brown", "Polar", "Polar"], dtype=pl.Categorical
    )
    print(cat_series.append(cat2_series))

Enum

上面来自2个不同类型列进行拼接的耗时的情况,在Enum中不会存在,因为已经提前获取到了全部的类别

dtype = pl.Enum(["Polar", "Panda", "Brown"])
cat_series = pl.Series(["Polar", "Panda", "Brown", "Brown", "Polar"], dtype=dtype)
cat2_series = pl.Series(["Panda", "Brown", "Brown", "Polar", "Polar"], dtype=dtype)

print(cat_series.append(cat2_series))
#shape: (10,)
#Series: '' [enum]
[
    "Polar"
    "Panda"
    "Brown"
    "Brown"
    "Polar"
    "Panda"
    "Brown"
    "Brown"
    "Polar"
    "Polar"
]

如果有编码的字符串类别,当不在提前获取的Enum中时,则会报错:OutOfBounds

dtype = pl.Enum(["Polar", "Panda", "Brown"])
try:
    cat_series = pl.Series(["Polar", "Panda", "Brown", "Black"], dtype=dtype)
except Exception as e:
    print(e)
#conversion from `str` to `enum` failed 
#in column '' for 1 out of 4 values: ["Black"]
#Ensure that all values in the input column are present 
#in the categories of the enum datatype.

比较

  • Categorical vs Categorical
  • Categorical vs String
  • Enum vs Enum
  • Enum vs String(该字符串必须要在提前获取的Enum中)

Categorical vs Categorical

with pl.StringCache():
    cat_series = pl.Series(["Brown", "Panda", "Polar"], dtype=pl.Categorical)
    cat_series2 = pl.Series(["Polar", "Panda", "Black"], dtype=pl.Categorical)
    print(cat_series == cat_series2)
#shape: (3,)
#Series: '' [bool]
[
    false
    true
    false
]

Categorical vs String

cat_series = pl.Series(["Brown", "Panda", "Polar"], dtype=pl.Categorical)
print(cat_series <= "Cat")
#shape: (3,)
#Series: '' [bool]
[
    true
    false
    false
]

cat_series = pl.Series(["Brown", "Panda", "Polar"], dtype=pl.Categorical)
cat_series_utf = pl.Series(["Panda", "Panda", "A Polar"])
print(cat_series <= cat_series_utf)
#shape: (3,)
#Series: '' [bool]
[
    true
    true
    false
]

Enum vs Enum

dtype = pl.Enum(["Polar", "Panda", "Brown"])
cat_series = pl.Series(["Brown", "Panda", "Polar"], dtype=dtype)
cat_series2 = pl.Series(["Polar", "Panda", "Brown"], dtype=dtype)
print(cat_series == cat_series2)
#shape: (3,)
#Series: '' [bool]
[
    false
    true
    false
]

Enum vs String(该字符串必须要在提前获取的Enum中)

try:
    cat_series = pl.Series(
        ["Low", "Medium", "High"], dtype=pl.Enum(["Low", "Medium", "High"])
    )
    cat_series <= "Excellent"
except Exception as e:
    print(e)
#conversion from `str` to `enum` failed 
#in column '' for 1 out of 1 values: ["Excellent"]
#Ensure that all values in the input column are present 
#in the categories of the enum datatype.

dtype = pl.Enum(["Low", "Medium", "High"])
cat_series = pl.Series(["Low", "Medium", "High"], dtype=dtype)
print(cat_series <= "Medium")
#shape: (3,)
#Series: '' [bool]
[
    true
    true
    false
]

dtype = pl.Enum(["Low", "Medium", "High"])
cat_series = pl.Series(["Low", "Medium", "High"], dtype=dtype)
cat_series2 = pl.Series(["High", "High", "Low"])
print(cat_series <= cat_series2)
#shape: (3,)
#Series: '' [bool]
[
    true
    true
    false
]

历史相关文章


以上是自己实践中遇到的一些问题,分享出来供大家参考学习,欢迎关注微信公众号:DataShare ,不定期分享干货

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容