原型模式——五种创建型模式之一

1.前言


单例模式可以避免重复创建消耗资源的对象,但是却不得不共用对象。若是对象本身也不让随意访问修改时,怎么办?通常做法是备份到副本,其它对象操作副本,最后获取权限合并,类似git上的PR操作。

2.概念


原型模式用原型实例指定创建对象的种类,并通过拷贝这些原型创建新的对象。需要注意的关键字是,新的对象,类没变。Java正好提供了Cloneable接口,它标识的类可以调用Object中实现的clone()方法而不抛出异常,即运行时通知虚拟机可以安全使用clone()方法返回拷贝对象。由于它直接操作内存中的二进制流,当大量操作或操作复杂对象时,性能优势将会很明显。

3.场景


动物园中有一只羊,对它进行克隆,产生另外一只完全一样的羊,分别安排两位有孩子的管理员照顾。有一天,对克隆羊进行基因操作,观察变化。

4.写法

// 1.声明此类可以被clone
public class Sheep implements Cloneable {
    
    private int age;
    private String sex;
    private Admin admin;

    public Sheep(int age, String sex, Admin admin) {
        super();
        this.age = age;
        this.sex = sex;
        this.admin = admin;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public String getSex() {
        return sex;
    }

    public void setSex(String sex) {
        this.sex = sex;
    }

    public Admin getAdmin() {
        return admin;
    }

    public void setAdmin(Admin admin) {
        this.admin = admin;
    }

    @Override
    public String toString() {
        return "Sheep [age=" + age + ", sex=" + sex + ", admin=" + admin + "]";
    }
    
    // 2.调用Object的clone方法
    public Sheep startClone() {
        Sheep sheep = null;
        try {
            sheep = (Sheep) super.clone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return sheep;
    }

}
public class Admin {
    
    private int age;
    private String sex;
    private Child child;
    public Admin(int age, String sex, Child child) {
        super();
        this.age = age;
        this.sex = sex;
        this.child = child;
    }
    
    public void setAge(int age) {
        this.age = age;
    }

    public void setSex(String sex) {
        this.sex = sex;
    }

    public void setChild(Child child) {
        this.child = child;
    }

    @Override
    public String toString() {
        return "Admin [age=" + age + ", sex=" + sex + ", child=" + child + "]";
    }
    
}
public class Child {

}
public class Zoo {

    public static void main(String[] args) {
        Sheep old = new Sheep(2, "雄性", new Admin(25, "女", new Child()));
        System.out.println(old.toString());
        Sheep current = old.startClone();
        System.out.println(current.toString());
        
        // 对克隆羊做处理
        current.setAge(1);
        current.setSex("雌性");
        current.getAdmin().setAge(34);
        current.getAdmin().setSex("男");
        System.out.println(old.toString());
        System.out.println(current.toString());
    }

}

根据上面的代码,我们知道羊引用了管理员,管理员引用了孩子。当对内存中数据拷贝时,除了基本数据类型(包括封装类型)及String类型,其它的引用关系将直接传递给副本,并不是重新创建一个对象。所以当对克隆羊操作时,年龄和性别直接改变,而对管理员的操作将寻址到内存中对应部分进行修改,导致原型也被修改。孩子与管理员的关系就如同管理员与羊,通过哈希值可以知道,孩子始终就一个,没有拷贝成功。


light clone.png

上面的错误是由于只拷贝了最外层对象的原因,我们称之为浅拷贝。为了解决这个问题,需要对内部的引用类型进行拷贝(Java中大部分引用类型实现了Cloneable接口,可以方便的拷贝),具体如下:

// 1.声明此类可以被clone
public class Sheep implements Cloneable {

    // 前面省略
    
    // 2.调用Object的clone方法
    public Sheep startClone() {
        Sheep sheep = null;
        try {
            sheep = (Sheep) super.clone();
            
            // 3.调用Admin的clone方法
            sheep.admin = this.admin.startClone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return sheep;
    }

}
public class Admin implements Cloneable {

    // 前面省略
    
    public Admin startClone() {
        Admin admin = null;
        try {
            admin = (Admin) super.clone();
            admin.child = this.child.startClone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return admin;
    }
    
}
public class Child implements Cloneable {

    public Child startClone() {
        Child child = null;
        try {
            child = (Child) super.clone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return child;
    }
    
}

通过日志的打印,发现这种方式(深拷贝)起作用了。由1、2行可以知道,拷贝时引用类型已经重新创建了对象。由3、4行可以知道,修改其中一个对象不会再改变另一个了。


deep clone.png

5.总结


原型模式通过Object的clone()方法实现,由于是内存操作,无视构造方法和访问权限,直接获取新的对象。但对于引用类型,需使用深拷贝,其它浅拷贝即可。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,711评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,932评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,770评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,799评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,697评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,069评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,535评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,200评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,353评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,290评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,331评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,020评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,610评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,694评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,927评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,330评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,904评论 2 341

推荐阅读更多精彩内容