Deep_in_mnist 2: 使用TensorFlow搭建ANN识别mnist手写数字(正确率97.49%)


这是我Deep_in_mnist系列的第二篇博客

  • 注意:这里的代码都是在Jupyter Notebook中运行,原始的.ipynb文件可以在我的GitHub项目主页上查看,其中的ANN_by_TensorFlow_with_one_hidden_layer.ipynb就是这篇博客的文件,里面包括代码、注释以及交互式运行结果,界面十分友好,读者可以下载后直接在Jupyter Notebook中打开即可,在这里作者也强烈推荐使用Jupyter Notebook进行学习。
  • 项目主页 GitHub:acphart/Deep_in_mnist 喜欢可以顺便给个star哦 ~~~

介绍

项目介绍

  • 这里使用TensorFlow搭建ANN(一层隐藏层)识别mnist手写数字特征

步骤

1. 导入工具库和准备数据

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import warnings

# os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
# warnings.filterwarnings('ignore')
  • 这里的all_mnist_data.csv是重新包装后的所有原始mnist数据,共70000个手写数字,数据详情及下载请阅读我GitHub主页上的介绍GitHub:acphart/Deep_in_mnist
all_data = pd.read_csv('../../dataset/all_mnist_data.csv')
'''划分训练集,交叉验证集和测试集'''
s_size = 70000
tr_r = 50000
cv_r = 60000
s_data = all_data[: s_size]

train = s_data[:tr_r]
cv = s_data[tr_r:cv_r]
test = s_data[cv_r:]

2. 定义向量化函数

def vectorize(y_flat):
    '''向量化函数,将数字转换成10维的one-hot向量'''
    n = len(y_flat)
    vectors = np.zeros((n, 10))
    for i in range(n):
        vectors[i][int(y_flat[i])] = 1
    return vectors 

3. 搭建ANN

'''
x, y分别为特征向量和对应的真实值向量,None代表可以同时向网络输入多个数据;
同时x也为网络第1层的激活值,第1层没有偏置。
'''
x = tf.placeholder('float32', [None, 784])
y = tf.placeholder('float32', [None, 10])

'''
w1_2为网络1、2层之间的权重矩阵;b2为第2层的偏置;a2为第2层的激活值。
'''
n_l2 = 100
stddev1 = 1./np.sqrt(784)
w1_2 = tf.Variable(tf.random_normal([784, n_l2], stddev=stddev1))
b2 = tf.Variable(tf.random_normal([n_l2]))
a2 = tf.sigmoid(tf.matmul(x, w1_2) + b2)

'''
w2_3为网络2、3层之间的权重矩阵;b3为第3层的偏置;
y_为第3层的激活值,也是整个网络的输出。
'''
stddev2=1./np.sqrt(n_l2)
w2_3 = tf.Variable(tf.random_normal([n_l2, 10], stddev=stddev2))
b3 = tf.Variable(tf.random_normal([10]))
y_ = tf.sigmoid(tf.matmul(a2, w2_3) + b3)

4. 超参数、代价函数和优化器

'''设置单批数据量大小、迭代次数、学习率、正则化参数'''
batch_size = 100
epoches = 30000
alpha = 0.002
# lmda = 5

'''cross_entropy为交叉熵代价函数'''
cross_entropy = - tf.reduce_sum(y * tf.log(y_) + (1 - y)*tf.log(1 - y_))

'''优化器'''
# cost_func = cross_entropy + lmda/batch_size*(tf.reduce_sum(w1_2**2) + tf.reduce_sum(w2_3**2))
train_step = tf.train.GradientDescentOptimizer(alpha).minimize(cross_entropy)

'''计算预测准确率'''
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float32'))

5. 迭代训练

'''初始化全局变量'''
init = tf.global_variables_initializer()
sess = tf.InteractiveSession()
sess.run(init)

index = 20
'''记录训练过程,作学习曲线图'''
epoch_list = []
acc_list = []
cost_list = []
'''迭代训练'''
for i in range(1,epoches+1):
    '''每次迭代随机抽取一批数据进行训练'''
    batch = train.sample(batch_size)
    x_batch = batch.values[:, 1:]
    y_batch = vectorize(batch.values[:, 0])
    sess.run(train_step, feed_dict={x: x_batch, y: y_batch})

    '''跟踪训练过程'''
    if i % index == 0:
        if(i >= index*5): index = index*10
        if i >= 10000: index = 2000 
        '''计算并输出验证集的准确率及训练集的代价函数值'''
        acc = accuracy.eval(feed_dict={x: cv.values[:, 1:], y: vectorize(cv.values[:, 0])})
        cost = cross_entropy.eval(feed_dict={x: x_batch, y: y_batch})
        print('epoches: {0:<4d}\t  cost: {1:>9.4f}\t accuracy: {2:<.4f}'.format( i, cost, acc))
        
        epoch_list.append(i)
        cost_list.append(cost)
        acc_list.append(acc)  
    epoches: 20       cost:  300.4771    accuracy: 0.4123
    epoches: 40       cost:  271.3025    accuracy: 0.6626
    epoches: 60       cost:  243.2697    accuracy: 0.6789
    epoches: 80       cost:  205.6114    accuracy: 0.7239
    epoches: 100      cost:  173.3042    accuracy: 0.7520
    epoches: 200      cost:  134.6437    accuracy: 0.8543
    epoches: 400      cost:   92.2489    accuracy: 0.8883
    epoches: 600      cost:   85.4235    accuracy: 0.8990
    epoches: 800      cost:   58.5701    accuracy: 0.9106
    epoches: 1000     cost:   70.4564    accuracy: 0.9131
    epoches: 2000     cost:   67.5324    accuracy: 0.9275
    epoches: 4000     cost:   46.1206    accuracy: 0.9452
    epoches: 6000     cost:   30.1419    accuracy: 0.9553
    epoches: 8000     cost:   11.9177    accuracy: 0.9602
    epoches: 10000    cost:   15.7994    accuracy: 0.9639
    epoches: 12000    cost:   27.5995    accuracy: 0.9654
    epoches: 14000    cost:   13.7188    accuracy: 0.9694
    epoches: 16000    cost:   11.3136    accuracy: 0.9705
    epoches: 18000    cost:   20.0752    accuracy: 0.9704
    epoches: 20000    cost:   13.3539    accuracy: 0.9722
    epoches: 22000    cost:   22.7526    accuracy: 0.9727
    epoches: 24000    cost:    8.0284    accuracy: 0.9741
    epoches: 26000    cost:    9.8284    accuracy: 0.9742
    epoches: 28000    cost:    5.2056    accuracy: 0.9745
    epoches: 30000    cost:    9.4290    accuracy: 0.9753

6. 查看学习曲线

  • 看图好像还可以继续迭代下去,但在我这里增加到35000以上就会cost就会变成nan,正确率也突然降到0.1以下,难道是发散了,我也很疑惑~~
  • 我在调超参数的过程中,这个网络得到的最好的准确率是98.33%;
  • 这里暂时就这样吧,因为要转向CNN了,后面学得更多了再好好优化。
'''做出训练图'''
fig, ax = plt.subplots(1, 1, sharex=True, sharey=True)
cost_list = np.array(cost_list)/cost_list[0]
_ = ax.plot(epoch_list, acc_list, color='g', label='accuracy')
_ = ax.plot(epoch_list, cost_list, color='r', label='cost')      
_ = ax.legend()
_ = ax.set_xscale('log')
_ = ax.set_ylim((0.0, 1.0))

7. 测试准确率

  • 准确率为0.9749,10000个测试数据里有251个识别错误
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float32'))
acc = accuracy.eval(feed_dict={x: test.values[:, 1:], y: vectorize(test.values[:, 0])})
print('accuracy : {0}'.format(acc))
    accuracy : 0.9749000072479248

8. 查看识别错误的数字

def show_pic(ax, image, y_=None, label=None):
    '''
    作图函数:
    ax为Matplotlib.Axes对象;
    image为单个的mnist手写数字特征向量,image.shape is (784,);
    y_为预测值;
    label为image对应的真实数字标签。
    '''
    img = image.reshape(28, 28)
    ax.imshow(img, cmap='Greys')
    ax.axis('off')
    if y_ != None:
        ax.text(28, 28, str(y_), color='r', fontsize=18)
    if label != None:
        ax.text(28, 14, str(label), color='black', fontsize=18)
  • 这里输出了前100个识别错误的数字,图中数字右上角黑色数字是真实值,右下角红色数字是预测值,结果表明我们的模型还需要改进,因为这里头有不少人一眼就能认出来的数字,而模型没有识别出来。
prediction = y_.eval(feed_dict={x: test.values[:, 1:], y: vectorize(test.values[:, 0])})
'''将one-hot向量转换为对应数字'''
pred_flat = [np.argmax(pred) for pred in prediction]
n = 10

fig, ax = plt.subplots(n, n, sharex=True, sharey=True)
fig.set_size_inches(15, 10)
ax = ax.flatten()

ax_id = 0
i = 0
while ax_id < n*n :
    image_i = test.values[i, 1:]
    yi = test.values[i, 0]
    pred_i = pred_flat[i]
    if pred_i != yi:
        show_pic(ax[ax_id], image_i, pred_i, int(yi))
        ax_id = ax_id + 1
    i = i + 1
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容