A young scientist's quest for clean water

Every summer, my family and I travel across the world, 3,000 miles away to the culturally diverse country of India. Now, India is a country infamous for its scorching heat and humidity. For me, the only relief from this heat is to drink plenty of water. Now, while in India, my parents always remind me to only drink boiled or bottled water, because unlike here in America, where I can just turn on a tap and easily get clean, potable water, in India, the water is often contaminated. So my parents have to make sure that the water we drink is safe.

However, I soon realized that not everyone is fortunate enough to enjoy the clean water we did. Outside my grandparents' house in the busy streets of India, I saw people standing in long lines under the hot sun filling buckets with water from a tap. I even saw children, who looked the same age as me, filling up these clear plastic bottles with dirty water from streams on the roadside. Watching these kids forced to drink water that I felt was too dirty to touch changed my perspective on the world. This unacceptable social injustice compelled me to want to find a solution to our world's clean water problem. I wanted to know why these kids lacked water, a substance that is essential for life. And I learned that we are facing a global water crisis.

Now, this may seem surprising, as 75 percent of our planet is covered in water, but only 2.5 percent of that is freshwater, and less than one percent of Earth's freshwater supply is available for human consumption. With rising populations, industrial development and economic growth, our demand for clean water is increasing, yet our freshwater resources are rapidly depleting. According to the World Health Organization, 660 million people in our world lack access to a clean water source. Lack of access to clean water is a leading cause of death in children under the age of five in developing countries, and UNICEF estimates that 3,000 children die every day from a water-related disease.

So after returning home one summer in eighth grade, I decided that I wanted to combine my passion for solving the global water crisis with my interest in science. So I decided that the best thing to do would be to convert my garage into a laboratory.

(Laughter)

Actually, at first I converted my kitchen into a laboratory, but my parents didn't really approve and kicked me out.

I also read a lot of journal papers on water-related research, and I learned that currently in developing countries, something called solar disinfection, or SODIS, is used to purify water. In SODIS, clear plastic bottles are filled with contaminated water and then exposed to sunlight for six to eight hours. The UV radiation from the sun destroys the DNA of these harmful pathogens and decontaminates the water. Now, while SODIS is really easy to use and energy-efficient, as it only uses solar energy, it's really slow, as it can take up to two days when it's cloudy. So in order to make the SODIS process faster, this new method called photocatalysis has recently been used.

So what exactly is this photocatalysis? Let's break it down: "photo" means from the sun, and a catalyst is something that speeds up a reaction. So what photocatalysis is doing is it's just speeding up this solar disinfection process. When sunlight comes in and strikes a photocatalyst, like TiO2, or titanium dioxide, it creates these really reactive oxygen species, like superoxides, hydrogen peroxide and hydroxyl radicals. These reactive oxygen species are able to remove bacteria and organics and a whole lot of contaminants from drinking water.

But unfortunately, there are several disadvantages to the way photocatalytic SODIS is currently deployed. See, what they do is they take the clear plastic bottles and they coat the inside with this photocatalytic coating. But photocatalysts like titanium dioxide are actually commonly used in sunscreens to block UV radiation. So when they're coated on the inside of these bottles, they're actually blocking some of the UV radiation and diminishing the efficiency of the process. Also, these photocatalytic coatings are not tightly bound to the plastic bottle, which means they wash off, and people end up drinking the catalyst. While TiO2 is safe and inert, it's really inefficient if you keep drinking the catalyst, because then you have to continue to replenish it, even after a few uses.

So my goal was to overcome the disadvantages of these current treatment methods and create a safe, sustainable, cost-effective and eco-friendly method of purifying water. What started off as an eighth grade science fair project is now my photocatalytic composite for water purification. The composite combines titanium dioxide with cement. The cement-like composite can be formed into several different shapes, which results in an extremely versatile range of deployment methods. For example, you could create a rod that can easily be placed inside water bottles for individual use or you could create a porous filter that can filter water for families. You can even coat the inside of an existing water tank to purify larger amounts of water for communities over a longer period of time.

Now, over the course of this, my journey hasn't really been easy. You know, I didn't have access to a sophisticated laboratory. I was 14 years old when I started, but I didn't let my age deter me in my interest in pursuing scientific research and wanting to solve the global water crisis.

See, water isn't just the universal solvent. Water is a universal human right. And for that reason, I'm continuing to work on this science fair project from 2012 to bring it from the laboratory into the real world. And this summer, I founded Catalyst for World Water, a social enterprise aimed at catalyzing solutions to the global water crisis.

(Applause)

Alone, a single drop of water can't do much, but when many drops come together, they can sustain life on our planet. Just as water drops come together to form oceans, I believe that we all must come together when tackling this global problem.

Thank you.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,524评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,869评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,813评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,210评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,085评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,117评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,533评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,219评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,487评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,582评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,362评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,218评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,589评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,899评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,176评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,503评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,707评论 2 335

推荐阅读更多精彩内容

  • 摘要:在家泡茶用桌旗有两大好处。桌旗要买和家具特别是餐桌颜色搭配的,如果正在装修,把定制窗帘的边角料做成桌旗最好用...
    白茶笔记阅读 5,241评论 0 0
  • 正如现在的时间 现在的天气 哭过的双眼已经疼的眨不开了。但是 我不知道和谁来聊一下自己觉得是委屈的事情。 我是...
    温暖它阅读 204评论 0 0
  • 还会潜水
    L炼阅读 110评论 0 0
  • 你肯定玩过微信红包。不是你给别人发,就是别人给你发。尤其春节那几天,微信红包真是满天飞,抢到手软。微信群里,一个接...
    叶紫莹阅读 595评论 0 1