面试官:说说你对冒泡排序的理解?如何实现?应用场景?

一、是什么

冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法

冒泡排序的思想就是在每次遍历一遍未排序的数列之后,将一个数据元素浮上去(也就是排好了一个数据)

如同碳酸饮料中二氧化碳的气泡最终会上浮到顶端一样,故名“冒泡排序”

假如我们要把 12、35、99、18、76 这 5 个数从大到小进行排序,那么数越大,越需要把它放在前面

思路如下:

  • 从后开始遍历,首先比较 18 和 76,发现 76 比 18 大,就把两个数交换顺序,得到 12、35、99、76、18

  • 接着比较 76 和 99,发现 76 比 99 小,所以不用交换顺序

  • 接着比较 99 和 35,发现 99 比 35 大,交换顺序

  • 接着比较 99 和 12,发现 99 比 12 大,交换顺序

最终第 1 趟排序的结果变成了 99、12、35、76、18,如下图所示:


上述可以看到,经过第一趟的排序,可以得到最大的元素,接下来第二趟排序则对剩下的的4个元素进行排序,如下图所示:


经过第 2 趟排序,结果为 99、76、12、35、18

然后开始第3趟的排序,结果为99、76、35、12、18

然后第四趟排序结果为99、76、35、18、12

经过 4 趟排序之后,只剩一个 12 需要排序了,这时已经没有可比较的元素了,这时排序完成

二、如何实现

如果要实现一个从小到大的排序,算法原理如下:

  • 首先比较相邻的元素,如果第一个元素比第二个元素大,则交换它们

  • 针对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对,这样,最后的元素会是最大的数

  • 针对所有的元素重复以上的步骤,除了最后一个

  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较


用代码表示则如下:

function bubbleSort(arr) {
    const len = arr.length;
    for (let i = 0; i < len - 1; i++) {
        for (let j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相邻元素两两对比
                var temp = arr[j+1];        // 元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

可以看到:冒泡排序在每一轮排序中都会使一个元素排到一趟, 也就是最终需要 n-1 轮这样的排序

而在每轮排序中都需要对相邻的两个元素进行比较,在最坏的情况下,每次比较之后都需要交换位置,此时时间复杂度为O(n^2)

优化

对冒泡排序常见的改进方法是加入一标志性变量exchange,用于标志某一趟排序过程中是否有数据交换

如果进行某一趟排序时并没有进行数据交换,则说明数据已经按要求排列好,可立即结束排序,避免不必要的比较过程

可以设置一标志性变量pos,用于记录每趟排序中最后一次进行交换的位置,由于pos位置之后的记录均已交换到位,故在进行下一趟排序时只要扫描到pos位置即可,如下:

function bubbleSort1(arr){
 const i=arr.length-1;//初始时,最后位置保持不变  
 while(i>0){
  let pos = 0;//每趟开始时,无记录交换
  for(let j = 0; j < i; j++){
   if(arr[j] > arr[j+1]){
        let tmp = arr[j];
        arr[j] = arr[j+1];
        arr[j+1] = tmp;
    pos = j;//记录最后交换的位置  
   }   
  }
  i = pos;//为下一趟排序作准备
 }
 return arr;
}

在待排序的数列有序的情况下,只需要一轮排序并且不用交换,此时情况最好,时间复杂度为O(n)

并且从上述比较中看到,只有后一个元素比前面的元素大(小)时才会对它们交换位置并向上冒出,对于同样大小的元素,是不需要交换位置的,所以对于同样大小的元素来说,相对位置是不会改变的,因此, 冒泡排序是稳定的

三、应用场景

冒泡排的核心部分是双重嵌套循环, 时间复杂度是 O(N 2 ),相比其它排序算法,这是一个相对较高的时间复杂度,一般情况不推荐使用,由于冒泡排序的简洁性,通常被用来对于程序设计入门的学生介绍算法的概念

参考文献

https://baike.baidu.com/item/%E5%86%92%E6%B3%A1%E6%8E%92%E5%BA%8F/4602306

https://www.runoob.com/w3cnote/bubble-sort.html

http://data.biancheng.net/view/116.html

https://dsb123dsb.github.io/2017/03/07/js%E5%AE%9E%E7%8E%B0%E5%86%92%E6%B3%A1%E6%8E%92%E5%BA%8F%E4%BB%A5%E5%8F%8A%E4%BC%98%E5%8C%96/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,552评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,666评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,519评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,180评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,205评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,344评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,781评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,449评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,635评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,467评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,515评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,217评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,775评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,851评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,084评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,637评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,204评论 2 341

推荐阅读更多精彩内容