给定一个二叉树
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
示例:
和填充每个节点的下一个右侧节点指针 I的区别在于,I中的树是完美二叉树,node的左孩子的next必定连接node的右孩子
输入:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":null,"next":null,"right":{"$id":"6","left":null,"next":null,"right":null,"val":7},"val":3},"val":1}
输出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":null,"right":null,"val":7},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"6","left":null,"next":null,"right":{"$ref":"5"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"6"},"val":1}
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
【易错点】
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() {}
Node(int _val, Node* _left, Node* _right, Node* _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public:
Node* connect(Node* root) {
if(!root) return root;
root->next = nullptr;
queue<Node *> _queue;
_queue.push(root);
while(!_queue.empty()) {
Node *node = _queue.front();
_queue.pop();
if(node->left) {
// 右孩子存在
if(node->right)
node->left->next = node->right;
else { // 右孩子不存在
// 去寻找第一个存在孩子兄弟节点 【易错点】
Node *bro = node->next;
while(true) {
if(bro) {
if(bro->left || bro->right)
break;
} else
break;
bro = bro->next;
}
if(bro) {
if(bro->left)
node->left->next = bro->left;
else if(bro->right)
node->left->next = bro->right;
else
node->left->next = nullptr;
} else
node->left->next = nullptr;
}
_queue.push(node->left);
}
if(node->right) {
// 去寻找第一个存在孩子兄弟节点 【易错点】
Node *bro = node->next;
while(true) {
if(bro) {
if(bro->left || bro->right)
break;
} else
break;
bro = bro->next;
}
if(bro) {
// 父节点的兄弟存在
if(bro->left)
node->right->next = bro->left;
else if(bro->right)
node->right->next = bro->right;
else
node->right->next = nullptr;
} else
node->right->next = nullptr;
_queue.push(node->right);
}
}
return root;
}
};