关于时间复杂度介绍


知道算法的速度和它需要多少空间是很有用的。这允许您为工作选择正确的算法。
O符号给出了一个算法运行时间和它使用的内存量的粗略指示。当有人说, "这个算法有最坏的情况下运行时间 O(n^2)和使用 O(n) 空间," 他们的意思是它有点慢, 但不需要大量额外的内存。
计算算法的O通常是通过数学分析来完成的。我们在这里跳数学,但是, 知道不同的值意味着什么是有用的, 所以这里有一个方便的表。n是指正在处理的数据项的数量。例如,当排序100个项目的数组时,n=100。

下面是每一类性能的一些例子:

Big-O Name Description
O(1) 恒久不变(constant) 这是最好的算法 不管有多少数据算法总是需要相同的时间量。示例:用索引查找数组的元素。
O(log n) 对数(logarithmic) 非常好 这些算法在每次迭代中将数据量减半。如果你有100个项目,需要大约7个步骤才能找到答案。有1000项, 它需要10个步骤,1000000项只采取20个步骤。即使对于大量的数据,这也是非常快的。示例:二进制搜索。
O(n) 线性(linear) 良好性能 如果你有100项, 这是100单位的工作,将项目的数量加倍使得算法花费了两倍长(200个工作单位)。例子:顺序搜索。
O(n log n) 线性化(linearithmic) 体面的表现 这比线性略差,但也不坏。例子:最快的通用排序算法。
O(n^2) 平方(quadratic) 有点慢 如果你有100个项目,这就等于100 ^ 2=10000个单位的工作。将项目数加倍使其慢四倍(因为2的平方等于4)。示例:使用嵌套循环的算法,如插入排序、冒泡排序。
O(n^3) 立方(cubic) 性能不佳 如果你有100项, 这做 100 ^ 3 = 100万单位的工作。加倍输入大小使其慢了八倍。例子:矩阵乘法。
O(n^3) 立方(cubic) 性能不佳 如果你有100项, 这做 100 ^ 3 = 100万单位的工作。加倍输入大小使其慢了八倍。例子:矩阵乘法。
O(2^n)) 指数级(exponential) 性能非常差 你想避免这些算法,但有时你别无选择。只需在输入中添加一位即可使运行时间加倍。示例: 旅行推销员问题。
O(n!) 阶乘(factorial) 难以忍受的缓慢 做任何事情都需要一百万年的时间。

O(1)

O(1)复杂性最常见的例子是访问数组索引。

let value = array[5]

O(1)的另一个例子是从栈中推送和弹出。

O(log n)

var j = 1
while j < n {
  // do constant time stuff
  j *= 2
}

"j" 不是简单地递增, 而是在每次运行时增加2倍。
二进制搜索算法是O(log n)复杂性的一个例子。

O(n)

for i in stride(from: 0, to: n, by: 1) {
  print(array[I])
}

数组遍历和线性搜索是O(n)复杂度的例子。

O(n log n)

for i in stride(from: 0, to: n, by: 1) {
var j = 1
  while j < n {
    j *= 2
    // do constant time stuff
  }
}

或者

for i in stride(from: 0, to: n, by: 1) {
  func index(after i: Int) -> Int? { // multiplies `i` by 2 until `i` >= `n`
    return i < n ? i * 2 : nil
  }
  for j in sequence(first: 1, next: index(after:)) {
    // do constant time stuff
  }
}

合并排序和堆排序是O(n log n)复杂性的示例。

O(n^2)

for i  in stride(from: 0, to: n, by: 1) {
  for j in stride(from: 1, to: n, by: 1) {
    // do constant time stuff
  }
}

遍历一个简单的二维数组和冒泡排序是O(n^2)复杂度的例子。

O(n^3)

for i in stride(from: 0, to: n, by: 1) {
  for j in stride(from: 1, to: n, by: 1) {
    for k in stride(from: 1, to: n, by: 1) {
      // do constant time stuff
    }
  }
}

O(2^n)

运行时间O(2^N)的算法通常是递归算法,通过递归求解两个较小的n-1个问题来解决n的问题。下面的示例打印出解决 N 个磁盘上著名的 "河内塔" 问题所需的所有动作。

func solveHanoi(n: Int, from: String, to: String, spare: String) {
  guard n >= 1 else { return }
  if n > 1 {
    solveHanoi(n: n - 1, from: from, to: spare, spare: to)
  } else {
    solveHanoi(n: n - 1, from: spare, to: to, spare: from)
  }
}

O(n!)

函数的最平凡例子,取O(n!)时间如下。

func nFactFunc(n: Int) {
  for i in stride(from: 0, to: n, by: 1) {
    nFactFunc(n: n - 1)
  }
}

通常, 你不需要数学来计算时间复杂度是多少, 但你可以简单地使用你的直觉。如果你的代码使用一个单循环来查看输入的所有n个元素,则算法是O(n)。果代码有两个嵌套循环,则为O(n^2)。三个嵌套循环给出O(n^3),以此类推。
请注意, O 表示法是一个估计, 只是真正有用的大值 n。例如,插入排序算法的最坏情况运行时间是O(n^2)。在理论上, 比合并排序的运行时间差, 即O(n log n)。但是对于少量数据,插入排序实际上更快,特别是如果数组已经部分排序了。
如果你觉得这很混乱,不要让这个O打扰你太多。当比较两种算法来找出哪一种算法更好时,这是最有用的。但最终你还是想在实践中检验哪一个才是最好的。如果数据量相对较小,那么即使是慢算法也将足够快用于实际使用。

传送门

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,056评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,842评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,938评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,296评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,292评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,413评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,824评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,493评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,686评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,502评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,553评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,281评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,820评论 3 305
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,873评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,109评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,699评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,257评论 2 341

推荐阅读更多精彩内容

  • 第2章 基本语法 2.1 概述 基本句法和变量 语句 JavaScript程序的执行单位为行(line),也就是一...
    悟名先生阅读 4,113评论 0 13
  • --- layout: post title: "如果有人问你关系型数据库的原理,叫他看这篇文章(转)" date...
    蓝坠星阅读 775评论 0 3
  • 世俗总强迫我 说还在乎你 其实我们都知道 我不爱别人 当然,也不爱你 我不是媚俗的芍药 自然不能许你今世来生 我是...
    咚塔塔族族人阅读 222评论 0 2
  • 生活就像老女佣,叫她找一样东西,她总要慢条斯理的从大抽屉里取出一个花格子小手巾包,去掉别针,打开来轻轻掀着看了一遍...
    川贝贝阅读 663评论 2 5
  • 第三章.异能者(3) "不要躲了,你以为你逃得了么?...
    千盈落殇阅读 125评论 0 0