PySpark SQL常用语法

许多数据分析师都是用HIVE SQL跑数,这里我建议转向PySpark:

  • PySpark的语法是从左到右串行的,便于阅读、理解和修正;SQL的语法是从内到外嵌套的,不方便维护;
  • PySpark继承Python优美、简洁的语法,同样的效果,代码行数可能只有SQL的十分之一;
  • Spark分转化操作和行动操作,只在行动操作时才真正计算,所以可以减少不必要的计算时间;
  • 相对于SQL层层嵌套的一个整体,PySpark可以拆分成多步,并可以十分方便地把中间结果保存为变量,更有利于调试和修改;
  • PySpark可以与Python中的其他模块结合使用,可以将多种功能有机结合成一个系统
  • PySpark SQL模块许多函数、方法与SQL中关键字一样,可以以比较低的学习成本切换
  • 最重要的,Spark是基于内存计算的,计算速度本身比Hive快很多倍

PySpark的安装配置

如果只是在单机上练习下,照着网上的帖子在Linux系统安装一下就可以了;如果想真正在集群上实战,还是找运维搭建吧。

PySpark SQL语法

最好的学习资料当然是官方文档,不过官方文档是按函数名排序的,这对于新手不太友好,所以这里整理一下。

数据拉取

第一步是拉取数据,与SQL、Pandas、R一样,在SparkSQL中,我们以DataFrame以基本的数据结构(不过要注意,SparkSQL DataFrame与Pandas的DataFrame是两种数据结构,虽然相互转换也很容易)。

加载包
from __future__ import print_function
import pandas as pd
from pyspark.sql import HiveContext
from pyspark import SparkContext,SparkConf
from sqlalchemy import create_engine
import datetime
import pyspark.sql.functions as F

conf = SparkConf().setAppName("abc")
sc = SparkContext(conf=conf)
hiveCtx = HiveContext(sc)

手工创建一个DataFrame
d = [{'name': 'Alice', 'age': 1},{'name': 'Bob', 'age': 5}]
df = sqlContext.createDataFrame(d)
df.show() 
从集群里运行SQL生成DataFrame

实际工作中往往是从集群中拉数,然后处理;还是执行SQL(尽管仍是SQL,但是不必写复杂的SQL;用基本的SQL先把源数据拉出来,复杂的处理和计算交给Spark来做),以下是用Hive拉数:

sql = "" # 拉数SQL
df  = hiveCtx.sql(sql)

缓存与清除缓存

Spark每次作行动操作时,都是从最初的转化操作开始计算;如果不想从头开始计算,想保存中间结果表,就应该把数据载入缓存。

df.cache()

与之相对的,清除缓存为

sqlContext.clearCache()

数据探索
展示
df.show() # 不加参数默认展示前20行
统计行数
df.count() 
查看schema
df.printSchema() 
查看字段
df.columns
查看字段类型
df.dtypes

数据处理
查询
df.select('age','name') # 带show才能看到结果
别名
df.select(df.age.alias('age_value'),'name')
筛选
df.filter(df.name=='Alice')
增加列

增加列有2种方法,一种是基于现在的列计算;一种是用pyspark.sql.functions的lit()增加常数列。

df.select(df.age+1,'age','name')
df.select(F.lit(0).alias('id'),'age','name')
增加行
df.unionAll(df2)
删除重复记录
df.drop_duplicates()
去重
df.distinct()
删除列
df.drop('id')
删除存在缺失值的记录
df.dropna(subset=['age', 'name'])  # 传入一个list,删除指定字段中存在缺失的记录
填补缺失值
df.fillna({'age':10,'name':'abc'})  # 传一个dict进去,对指定的字段填充
分组计算
df.groupby('name').agg(F.max(df['age']))
join
df.groupby('name').agg(F.max(df['age']))

函数和UDF

pyspark.sql.functions里有许多常用的函数,可以满足日常绝大多数的数据处理需求;当然也支持自己写的UDF,直接拿来用。

自带函数

根据官方文档,以下是部分函数说明:

'lit': 'Creates a :class:`Column` of literal value.',
'col': 'Returns a :class:`Column` based on the given column name.',
'column': 'Returns a :class:`Column` based on the given column name.',
'asc': 'Returns a sort expression based on the ascending order of the given column name.',
'desc': 'Returns a sort expression based on the descending order of the given column name.',

'upper': 'Converts a string expression to upper case.',
'lower': 'Converts a string expression to upper case.',
'sqrt': 'Computes the square root of the specified float value.',
'abs': 'Computes the absolutle value.',

'max': 'Aggregate function: returns the maximum value of the expression in a group.',
'min': 'Aggregate function: returns the minimum value of the expression in a group.',
'first': 'Aggregate function: returns the first value in a group.',
'last': 'Aggregate function: returns the last value in a group.',
'count': 'Aggregate function: returns the number of items in a group.',
'sum': 'Aggregate function: returns the sum of all values in the expression.',
'avg': 'Aggregate function: returns the average of the values in a group.',
'mean': 'Aggregate function: returns the average of the values in a group.',
'sumDistinct': 'Aggregate function: returns the sum of distinct values in the expression.',
df.select(F.max(df.age))
df.select(F.min(df.age))
df.select(F.avg(df.age)) # 也可以用mean,一样的效果
df.select(F.countDistinct(df.age)) # 去重后统计
df.select(F.count(df.age)) # 直接统计,经试验,这个函数会去掉缺失值会再统计

from pyspark.sql import Window
df.withColumn("row_number", F.row_number().over(Window.partitionBy("a","b","c","d").orderBy("time"))).show() # row_number()函数

日期相关函数参考:pyspark系列--日期函数

UDF

统计计算
描述性统计分析
df.describe('age').show() # describe()相当于R里的summary()

数据写出

数据写出有以下几种情况——

  • 写入集群分区表
all_bike.rdd.map(lambda line: u','.join(map(lambda x:unicode(x),line))).saveAsTextFile('/user/hive/warehouse/bi.db/bikeid_without_3codes_a_d/dt={}'.format(t0_uf)) #转化为RDD写入HDFS路径

还有一种方法,是先把dataframe创建成一个临时表,再用hive sql的语句写入表的分区。

bike_change_2days.registerTempTable('bike_change_2days')
sqlContext.sql("insert into bi.bike_changes_2days_a_d partition(dt='%s') select citycode,biketype,detain_bike_flag,bike_tag_onday,bike_tag_yesterday,bike_num from bike_change_2days"%(date))
  • 写入集群非分区表
df_spark.write.mode("append").insertInto('bi.pesudo_bike_white_list') # 直接使用write.mode方法insert到指定的集群表
  • 写入数据库
    可以先将PySpark DataFrame转化成Pandas DataFrame,然后用pandas的to_sql方法插入数据库

  • 写出本地

df.write.csv()

与Pandas DataFrame互相转换

如果你熟悉Pandas包,并且PySpark处理的中间数据量不是太大,那么可以直接转换成pandas DataFrame,然后转化成常规操作。

df.toPandas() # PySpark DataFrame转化成Pandas DataFrame
import pandas as pd
df_p = pd.DataFrame(dict(num=range(3),char=['a','b','c']))
df_s = sqlContext.createDataFrame(df_p) # pandas dataframe转化成PySpark DataFrame
type(df_s)
机器学习

关于机器学习,在以后的文章里再单独讨论。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容