LC Trie

Catalog:
LC 745 [Prefix and Suffix Search]
LC 676 [Implement Magic Dictionary]
LC 208 Implement Trie (Prefix Tree)
LC 211 Add and Search Word -- Data Structure Design
[Uber] 642 Design Search Autocomplete System

[Uber]LC 745 Prefix and Suffix Search
Method 1: build all possible prefix and suffix combination in a dictionary and words with higher weight will overwrite the previous record. This is for quick look up!

class WordFilter(object):

    def __init__(self, words):
        self.d = {}
        for index, word in enumerate(words):
            prefix = ''
            for char in [''] + list(word):
                prefix += char
                suffix = ''
                for char in [''] + list(word[::-1]):
                    suffix += char
                    self.d[prefix + '.' + suffix[::-1]] = index

    def f(self, prefix, suffix):
        return self.d.get(prefix + '.' + suffix, -1)

Store pre and suffix, look up is slower but it is quicker to build

class WordFilter(object):

    def __init__(self, words):
        self.prefix=defaultdict(set)
        self.suffix=defaultdict(set)
        self.ind={}

        for i,w in enumerate(words):
            self.ind[w]=i
            n=len(w)
            for i in range(n+1):
                self.prefix[w[:i]].add(w)
                self.suffix[w[n-i:]].add(w)

    def f(self, prefix, suffix):
        pool=self.prefix[prefix]&self.suffix[suffix]
        return max(self.ind[w] for w in pool) if pool else -1  

Not using Trie Structure could lead a very big space complexity when N is very big. Trie would be recommended to save space and get O(L) find time complexity!

The way we will look up the Trie is using combination of prefix and suffix, for example, pre + '#' + suf. That's what we are going to insert when we get a word

TrieNode should have a field called weight, and a method to insert new pair.

LC 676 Implement Magic Dictionary

Trie (we pronounce "try") or prefix tree is a tree data structure, which is used for retrieval of a key in a dataset of strings. There are various applications of this very efficient data structure such as : Autocomplete, Spell checker, IP routing (Longest prefix matching), T9 predictive text, Solving word games.

There are several other data structures, like balanced trees and hash tables, which give us the possibility to search for a word in a dataset of strings. Then why do we need trie? Although hash table has O(1)O(1)O(1) time complexity for looking for a key, it is not efficient in the following operations :
•Finding all keys with a common prefix.
•Enumerating a dataset of strings in lexicographical order.

Trie could use less space compared to Hash Table when storing many keys with the same prefix. In this case using trie has only O(m) time complexity, where m is the key length. Searching for a key in a balanced tree costs O(mlogn) time complexity.

LC 208 Implement Trie (Prefix Tree)
Implement a trie with insert, search, and startsWith methods.

class TrieNode(object):
    def __init__(self):
        self.is_word = False
        self.children = collections.defaultdict(TrieNode)

class Trie(object):
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        node = self.root
        for c in word:
            node = node.children[c]
        node.is_word = True

    def search(self, word, search_word=True):
        node = self.root
        for c in word:
            if c not in node.children:
                return False
            node = node.children[c]
        return node.is_word if search_word else True

    def startsWith(self, prefix):
        return self.search(prefix, False)

LC 211 Add and Search Word -- Data Structure Design
Implement a class called WordDictionary with add and search methods. Search(word) can search a literal word or a regular expression string containing only letters a-z or . (any one letter).
Hash table and bucket by len(word) -- collision if the word length are the same or quite gather together. So if we only need to add and search, and we do not need frequency counting, it is definitely better to use Trie.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容