1.Fiber
React 的核心流程可以分为两个部分:
- reconciliation (调度算法,也可称为 render):
- 更新 state 与 props;
- 调用生命周期钩子;
- 生成 virtual dom;
- 通过新旧 vdom 进行 diff 算法,获取 vdom change;
- 确定是否需要重新渲染
- commit:
- 如需要,则操作 dom 节点更新;
要了解 Fiber,我们首先来看为什么需要它?
问题: 随着应用变得越来越庞大,整个更新渲染的过程开始变得吃力,大量的组件渲染会导致主进程长时间被占用,导致一些动画或高频操作出现卡顿和掉帧的情况。而关键点,便是 同步阻塞。在之前的调度算法中,React 需要实例化每个类组件,生成一颗组件树,使用 同步递归 的方式进行遍历渲染,而这个过程最大的问题就是无法 暂停和恢复。
解决方案: 解决同步阻塞的方法,通常有两种: 异步 与 任务分割。而 React Fiber 便是为了实现任务分割而诞生的。
-
简述:
- 在 React V16 将调度算法进行了重构, 将之前的 stack reconciler 重构成新版的 fiber reconciler,变成了具有链表和指针的 单链表树遍历算法。通过指针映射,每个单元都记录着遍历当下的上一步与下一步,从而使遍历变得可以被暂停和重启。
- 这里我理解为是一种 任务分割调度算法,主要是 将原先同步更新渲染的任务分割成一个个独立的 小任务单位,根据不同的优先级,将小任务分散到浏览器的空闲时间执行,充分利用主进程的事件循环机制。
-
核心:
- Fiber 这里可以具象为一个 数据结构:
class Fiber { constructor(instance) { this.instance = instance // 指向第一个 child 节点 this.child = child // 指向父节点 this.return = parent // 指向第一个兄弟节点 this.sibling = previous } }
-
链表树遍历算法: 通过 节点保存与映射,便能够随时地进行 停止和重启,这样便能达到实现任务分割的基本前提;
- 1、首先通过不断遍历子节点,到树末尾;
- 2、开始通过 sibling 遍历兄弟节点;
- 3、return 返回父节点,继续执行2;
- 4、直到 root 节点后,跳出遍历;
-
任务分割,React 中的渲染更新可以分成两个阶段:
- reconciliation 阶段: vdom 的数据对比,是个适合拆分的阶段,比如对比一部分树后,先暂停执行个动画调用,待完成后再回来继续比对。
- Commit 阶段: 将 change list 更新到 dom 上,不适合拆分,因为使用 vdom 的意义就是为了节省传说中最耗时的 dom 操作,把所有操作一次性更新,如果在这里又拆分,那不是又懵了么。🙃
-
分散执行: 任务分割后,就可以把小任务单元分散到浏览器的空闲期间去排队执行,而实现的关键是两个新API:
requestIdleCallback
与requestAnimationFrame
- 低优先级的任务交给
requestIdleCallback
处理,这是个浏览器提供的事件循环空闲期的回调函数,需要 pollyfill,而且拥有 deadline 参数,限制执行事件,以继续切分任务; - 高优先级的任务交给
requestAnimationFrame
处理;
- 低优先级的任务交给
// 类似于这样的方式 requestIdleCallback((deadline) => { // 当有空闲时间时,我们执行一个组件渲染; // 把任务塞到一个个碎片时间中去; while ((deadline.timeRemaining() > 0 || deadline.didTimeout) && nextComponent) { nextComponent = performWork(nextComponent); } });
- 优先级策略: 文本框输入 > 本次调度结束需完成的任务 > 动画过渡 > 交互反馈 > 数据更新 > 不会显示但以防将来会显示的任务
Tips:
Fiber 其实可以算是一种编程思想,在其它语言中也有许多应用(Ruby Fiber)。当遇到进程阻塞的问题时,任务分割、异步调用 和 缓存策略 是三个显著的解决思路。
2. 生命周期
在新版本中,React 官方对生命周期有了新的 变动建议:
- 使用
getDerivedStateFromProps
替换componentWillMount
; - 使用
getSnapshotBeforeUpdate
替换componentWillUpdate
; - 避免使用
componentWillReceiveProps
;
其实该变动的原因,正是由于上述提到的 Fiber。首先,从上面我们知道 React 可以分成 reconciliation 与 commit 两个阶段,对应的生命周期如下:
-
reconciliation:
componentWillMount
componentWillReceiveProps
shouldComponentUpdate
componentWillUpdate
-
commit:
componentDidMount
componentDidUpdate
componentWillUnmount
在 Fiber 中,reconciliation 阶段进行了任务分割,涉及到 暂停 和 重启,因此可能会导致 reconciliation 中的生命周期函数在一次更新渲染循环中被 多次调用 的情况,产生一些意外错误。
新版的建议生命周期如下:
class Component extends React.Component {
// 替换 `componentWillReceiveProps` ,
// 初始化和 update 时被调用
// 静态函数,无法使用 this
static getDerivedStateFromProps(nextProps, prevState) {}
// 判断是否需要更新组件
// 可以用于组件性能优化
shouldComponentUpdate(nextProps, nextState) {}
// 组件被挂载后触发
componentDidMount() {}
// 替换 componentWillUpdate
// 可以在更新之前获取最新 dom 数据
getSnapshotBeforeUpdate() {}
// 组件更新后调用
componentDidUpdate() {}
// 组件即将销毁
componentWillUnmount() {}
// 组件已销毁
componentDidUnMount() {}
}
-
使用建议:
- 在
constructor
初始化 state; - 在
componentDidMount
中进行事件监听,并在componentWillUnmount
中解绑事件; - 在
componentDidMount
中进行数据的请求,而不是在componentWillMount
; - 需要根据 props 更新 state 时,使用
getDerivedStateFromProps(nextProps, prevState)
;- 旧 props 需要自己存储,以便比较;
public static getDerivedStateFromProps(nextProps, prevState) { // 当新 props 中的 data 发生变化时,同步更新到 state 上 if (nextProps.data !== prevState.data) { return { data: nextProps.data } } else { return null1 } }
- 可以在
componentDidUpdate
监听 props 或者 state 的变化,例如:
componentDidUpdate(prevProps) { // 当 id 发生变化时,重新获取数据 if (this.props.id !== prevProps.id) { this.fetchData(this.props.id); } }
- 在
componentDidUpdate
使用setState
时,必须加条件,否则将进入死循环; -
getSnapshotBeforeUpdate(prevProps, prevState)
可以在更新之前获取最新的渲染数据,它的调用是在 render 之后, mounted 之前; -
shouldComponentUpdate
: 默认每次调用setState
,一定会最终走到 diff 阶段,但可以通过shouldComponentUpdate
的生命钩子返回false
来直接阻止后面的逻辑执行,通常是用于做条件渲染,优化渲染的性能。
- 在
3. setState
在了解setState
之前,我们先来简单了解下 React 一个包装结构: Transaction:
-
事务 (Transaction):
- 是 React 中的一个调用结构,用于包装一个方法,结构为: initialize - perform(method) - close。通过事务,可以统一管理一个方法的开始与结束;处于事务流中,表示进程正在执行一些操作;
setState
: React 中用于修改状态,更新视图。它具有以下特点:-
异步与同步:
setState
并不是单纯的异步或同步,这其实与调用时的环境相关:- 在 合成事件 和 生命周期钩子(除 componentDidUpdate) 中,
setState
是"异步"的;-
原因: 因为在
setState
的实现中,有一个判断: 当更新策略正在事务流的执行中时,该组件更新会被推入dirtyComponents
队列中等待执行;否则,开始执行batchedUpdates
队列更新;- 在生命周期钩子调用中,更新策略都处于更新之前,组件仍处于事务流中,而
componentDidUpdate
是在更新之后,此时组件已经不在事务流中了,因此则会同步执行; - 在合成事件中,React 是基于 事务流完成的事件委托机制 实现,也是处于事务流中;
- 在生命周期钩子调用中,更新策略都处于更新之前,组件仍处于事务流中,而
-
问题: 无法在
setState
后马上从this.state
上获取更新后的值。 -
解决: 如果需要马上同步去获取新值,
setState
其实是可以传入第二个参数的。setState(updater, callback)
,在回调中即可获取最新值;
-
原因: 因为在
- 在 原生事件 和 setTimeout 中,
setState
是同步的,可以马上获取更新后的值;- 原因: 原生事件是浏览器本身的实现,与事务流无关,自然是同步;而
setTimeout
是放置于定时器线程中延后执行,此时事务流已结束,因此也是同步;
- 原因: 原生事件是浏览器本身的实现,与事务流无关,自然是同步;而
- 在 合成事件 和 生命周期钩子(除 componentDidUpdate) 中,
批量更新: 在 合成事件 和 生命周期钩子 中,
setState
更新队列时,存储的是 合并状态(Object.assign
)。因此前面设置的 key 值会被后面所覆盖,最终只会执行一次更新;-
函数式: 由于 Fiber 及 合并 的问题,官方推荐可以传入 函数 的形式。
setState(fn)
,在fn
中返回新的state
对象即可,例如this.state((state, props) => newState);
- 使用函数式,可以用于避免
setState
的批量更新的逻辑,传入的函数将会被 顺序调用;
- 使用函数式,可以用于避免
-
注意事项:
- setState 合并,在 合成事件 和 生命周期钩子 中多次连续调用会被优化为一次;
- 当组件已被销毁,如果再次调用
setState
,React 会报错警告,通常有两种解决办法:- 将数据挂载到外部,通过 props 传入,如放到 Redux 或 父级中;
- 在组件内部维护一个状态量 (isUnmounted),
componentWillUnmount
中标记为 true,在setState
前进行判断;
4. HOC(高阶组件)
HOC(Higher Order Componennt) 是在 React 机制下社区形成的一种组件模式,在很多第三方开源库中表现强大。
-
简述:
- 高阶组件不是组件,是 增强函数,可以输入一个元组件,返回出一个新的增强组件;
- 高阶组件的主要作用是 代码复用,操作 状态和参数;
-
用法:
-
属性代理 (Props Proxy): 返回出一个组件,它基于被包裹组件进行 功能增强;
- 默认参数: 可以为组件包裹一层默认参数;
function proxyHoc(Comp) { return class extends React.Component { render() { const newProps = { name: 'tayde', age: 1, } return <Comp {...this.props} {...newProps} /> } } }
- 提取状态: 可以通过 props 将被包裹组件中的 state 依赖外层,例如用于转换受控组件:
function withOnChange(Comp) { return class extends React.Component { constructor(props) { super(props) this.state = { name: '', } } onChangeName = () => { this.setState({ name: 'dongdong', }) } render() { const newProps = { value: this.state.name, onChange: this.onChangeName, } return <Comp {...this.props} {...newProps} /> } } }
使用姿势如下,这样就能非常快速的将一个
Input
组件转化成受控组件。const NameInput = props => (<input name="name" {...props} />) export default withOnChange(NameInput)
- 包裹组件: 可以为被包裹元素进行一层包装,
function withMask(Comp) { return class extends React.Component { render() { return ( <div> <Comp {...this.props} /> <div style={{ width: '100%', height: '100%', backgroundColor: 'rgba(0, 0, 0, .6)', }} </div> ) } } }
-
反向继承 (Inheritance Inversion): 返回出一个组件,继承于被包裹组件,常用于以下操作:
function IIHoc(Comp) { return class extends Comp { render() { return super.render(); } }; }
-
渲染劫持 (Render Highjacking)
- 条件渲染: 根据条件,渲染不同的组件
function withLoading(Comp) { return class extends Comp { render() { if(this.props.isLoading) { return <Loading /> } else { return super.render() } } }; }
- 可以直接修改被包裹组件渲染出的 React 元素树
操作状态 (Operate State): 可以直接通过
this.state
获取到被包裹组件的状态,并进行操作。但这样的操作容易使 state 变得难以追踪,不易维护,谨慎使用。
-
-
-
应用场景:
- 权限控制,通过抽象逻辑,统一对页面进行权限判断,按不同的条件进行页面渲染:
function withAdminAuth(WrappedComponent) { return class extends React.Component { constructor(props){ super(props) this.state = { isAdmin: false, } } async componentWillMount() { const currentRole = await getCurrentUserRole(); this.setState({ isAdmin: currentRole === 'Admin', }); } render() { if (this.state.isAdmin) { return <Comp {...this.props} />; } else { return (<div>您没有权限查看该页面,请联系管理员!</div>); } } }; }
- 性能监控,包裹组件的生命周期,进行统一埋点:
function withTiming(Comp)� { return class extends Comp { constructor(props) { super(props); this.start = Date.now(); this.end = 0; } componentDidMount() { super.componentDidMount && super.componentDidMount(); this.end = Date.now(); console.log(`${WrappedComponent.name} 组件渲染时间为 ${this.end - this.start} ms`); } render() { return super.render(); } }; }
- 代码复用,可以将重复的逻辑进行抽象。
-
使用注意:
- 纯函数: 增强函数应为纯函数,避免侵入修改元组件;
- 避免用法污染: 理想状态下,应透传元组件的无关参数与事件,尽量保证用法不变;
- 命名空间: 为 HOC 增加特异性的组件名称,这样能便于开发调试和查找问题;
-
引用传递: 如果需要传递元组件的 refs 引用,可以使用
React.forwardRef
;
-
引用传递: 如果需要传递元组件的 refs 引用,可以使用
-
- 静态方法: 元组件上的静态方法并无法被自动传出,会导致业务层无法调用;解决:
- 函数导出
- 静态方法赋值
- 重新渲染: 由于增强函数每次调用是返回一个新组件,因此如果在 Render 中使用增强函数,就会导致每次都重新渲染整个HOC,而且之前的状态会丢失;
5. Redux
Redux 是一个 数据管理中心,可以把它理解为一个全局的 data store 实例。它通过一定的使用规则和限制,保证着数据的健壮性、可追溯和可预测性。它与 React 无关,可以独立运行于任何 JavaScript 环境中,从而也为同构应用提供了更好的数据同步通道。
-
核心理念:
- 单一数据源: 整个应用只有唯一的状态树,也就是所有 state 最终维护在一个根级 Store 中;
-
状态只读: 为了保证状态的可控性,最好的方式就是监控状态的变化。那这里就两个必要条件:
- Redux Store 中的数据无法被直接修改;
- 严格控制修改的执行;
- 纯函数: 规定只能通过一个纯函数 (Reducer) 来描述修改;
大致的数据结构如下所示:
<img width="500" src="./images/interview/8.png">
-
理念实现:
-
Store: 全局 Store 单例, 每个 Redux 应用下只有一个 store, 它具有以下方法供使用:
-
getState
: 获取 state; -
dispatch
: 触发 action, 更新 state; -
subscribe
: 订阅数据变更,注册监听器;
-
// 创建 const store = createStore(Reducer, initStore)
- Action: 它作为一个行为载体,用于映射相应的 Reducer,并且它可以成为数据的载体,将数据从应用传递至 store 中,是 store 唯一的数据源;
// 一个普通的 Action const action = { type: 'ADD_LIST', item: 'list-item-1', } // 使用: store.dispatch(action) // 通常为了便于调用,会有一个 Action 创建函数 (action creater) funtion addList(item) { return const action = { type: 'ADD_LIST', item, } } // 调用就会变成: dispatch(addList('list-item-1'))
- Reducer: 用于描述如何修改数据的纯函数,Action 属于行为名称,而 Reducer 便是修改行为的实质;
// 一个常规的 Reducer // @param {state}: 旧数据 // @param {action}: Action 对象 // @returns {any}: 新数据 const initList = [] function ListReducer(state = initList, action) { switch (action.type) { case 'ADD_LIST': return state.concat([action.item]) break defalut: return state } }
注意:
- 遵守数据不可变,不要去直接修改 state,而是返回出一个 新对象,可以使用
assign / copy / extend / 解构
等方式创建新对象; - 默认情况下需要 返回原数据,避免数据被清空;
- 最好设置 初始值,便于应用的初始化及数据稳定;
-
Store: 全局 Store 单例, 每个 Redux 应用下只有一个 store, 它具有以下方法供使用:
-
进阶:
-
React-Redux: 结合 React 使用;
-
<Provider>
: 将 store 通过 context 传入组件中; -
connect
: 一个高阶组件,可以方便在 React 组件中使用 Redux;- 将
store
通过mapStateToProps
进行筛选后使用props
注入组件
- 将
- 根据
mapDispatchToProps
创建方法,当组件调用时使用dispatch
触发对应的action
- 根据
-
-
Reducer 的拆分与重构:
- 随着项目越大,如果将所有状态的 reducer 全部写在一个函数中,将会 难以维护;
- 可以将 reducer 进行拆分,也就是 函数分解,最终再使用
combineReducers()
进行重构合并;
-
异步 Action: 由于 Reducer 是一个严格的纯函数,因此无法在 Reducer 中进行数据的请求,需要先获取数据,再
dispatch(Action)
即可,下面是三种不同的异步实现:
-
React-Redux: 结合 React 使用;
6. React Hooks
React 中通常使用 类定义 或者 函数定义 创建组件:
在类定义中,我们可以使用到许多 React 特性,例如 state、 各种组件生命周期钩子等,但是在函数定义中,我们却无能为力,因此 React 16.8 版本推出了一个新功能 (React Hooks),通过它,可以更好的在函数定义组件中使用 React 特性。
-
好处:
- 1、跨组件复用: 其实 render props / HOC 也是为了复用,相比于它们,Hooks 作为官方的底层 API,最为轻量,而且改造成本小,不会影响原来的组件层次结构和传说中的嵌套地狱;
- 2、类定义更为复杂:
- 不同的生命周期会使逻辑变得分散且混乱,不易维护和管理;
- 时刻需要关注
this
的指向问题; - 代码复用代价高,高阶组件的使用经常会使整个组件树变得臃肿;
- 3、状态与UI隔离: 正是由于 Hooks 的特性,状态逻辑会变成更小的粒度,并且极容易被抽象成一个自定义 Hooks,组件中的状态和 UI 变得更为清晰和隔离。
-
注意:
- 避免在 循环/条件判断/嵌套函数 中调用 hooks,保证调用顺序的稳定;
- 只有 函数定义组件 和 hooks 可以调用 hooks,避免在 类组件 或者 普通函数 中调用;
- 不能在
useEffect
中使用useState
,React 会报错提示; - 类组件不会被替换或废弃,不需要强制改造类组件,两种方式能并存;
-
重要钩子*:
-
状态钩子 (
useState
): 用于定义组件的 State,其到类定义中this.state
的功能;
// useState 只接受一个参数: 初始状态 // 返回的是组件名和更改该组件对应的函数 const [flag, setFlag] = useState(true); // 修改状态 setFlag(false) // 上面的代码映射到类定义中: this.state = { flag: true } const flag = this.state.flag const setFlag = (bool) => { this.setState({ flag: bool, }) }
-
生命周期钩子 (
useEffect
):
类定义中有许多生命周期函数,而在 React Hooks 中也提供了一个相应的函数 (
useEffect
),这里可以看做componentDidMount
、componentDidUpdate
和componentWillUnmount
的结合。-
useEffect(callback, [source])
接受两个参数-
callback
: 钩子回调函数; -
source
: 设置触发条件,仅当 source 发生改变时才会触发; -
useEffect
钩子在没有传入[source]
参数时,默认在每次 render 时都会优先调用上次保存的回调中返回的函数,后再重新调用回调;
-
useEffect(() => { // 组件挂载后执行事件绑定 console.log('on') addEventListener() // 组件 update 时会执行事件解绑 return () => { console.log('off') removeEventListener() } }, [source]); // 每次 source 发生改变时,执行结果(以类定义的生命周期,便于大家理解): // --- DidMount --- // 'on' // --- DidUpdate --- // 'off' // 'on' // --- DidUpdate --- // 'off' // 'on' // --- WillUnmount --- // 'off'
-
通过第二个参数,我们便可模拟出几个常用的生命周期:
-
componentDidMount
: 传入[]
时,就只会在初始化时调用一次;
const useMount = (fn) => useEffect(fn, [])
-
componentWillUnmount
: 传入[]
,回调中的返回的函数也只会被最终执行一次;
const useUnmount = (fn) => useEffect(() => fn, [])
-
mounted
: 可以使用 useState 封装成一个高度可复用的 mounted 状态;
const useMounted = () => { const [mounted, setMounted] = useState(false); useEffect(() => { !mounted && setMounted(true); return () => setMounted(false); }, []); return mounted; }
-
componentDidUpdate
:useEffect
每次均会执行,其实就是排除了 DidMount 后即可;
const mounted = useMounted() useEffect(() => { mounted && fn() })
-
-
状态钩子 (
-
其它内置钩子:
useContext
: 获取 context 对象-
useReducer
: 类似于 Redux 思想的实现,但其并不足以替代 Redux,可以理解成一个组件内部的 redux:- 并不是持久化存储,会随着组件被销毁而销毁;
- 属于组件内部,各个组件是相互隔离的,单纯用它并无法共享数据;
- 配合
useContext
的全局性,可以完成一个轻量级的 Redux;(easy-peasy)
useCallback
: 缓存回调函数,避免传入的回调每次都是新的函数实例而导致依赖组件重新渲染,具有性能优化的效果;useMemo
: 用于缓存传入的 props,避免依赖的组件每次都重新渲染;useRef
: 获取组件的真实节点;-
useLayoutEffect
:- DOM更新同步钩子。用法与
useEffect
类似,只是区别于执行时间点的不同。 -
useEffect
属于异步执行,并不会等待 DOM 真正渲染后执行,而useLayoutEffect
则会真正渲染后才触发; - 可以获取更新后的 state;
- DOM更新同步钩子。用法与
自定义钩子(
useXxxxx
): 基于 Hooks 可以引用其它 Hooks 这个特性,我们可以编写自定义钩子,如上面的useMounted
。又例如,我们需要每个页面自定义标题:
function useTitle(title) {
useEffect(
() => {
document.title = title;
});
}
// 使用:
function Home() {
const title = '我是首页'
useTitle(title)
return (
<div>{title}</div>
)
}
7. SSR
SSR,俗称 服务端渲染 (Server Side Render),讲人话就是: 直接在服务端层获取数据,渲染出完成的 HTML 文件,直接返回给用户浏览器访问。
前后端分离: 前端与服务端隔离,前端动态获取数据,渲染页面。
-
痛点:
-
首屏渲染性能瓶颈:
- 空白延迟: HTML下载时间 + JS下载/执行时间 + 请求时间 + 渲染时间。在这段时间内,页面处于空白的状态。
-
SEO 问题: 由于页面初始状态为空,因此爬虫无法获取页面中任何有效数据,因此对搜索引擎不友好。
- 虽然一直有在提动态渲染爬虫的技术,不过据我了解,大部分国内搜索引擎仍然是没有实现。
-
最初的服务端渲染,便没有这些问题。但我们不能返璞归真,既要保证现有的前端独立的开发模式,又要由服务端渲染,因此我们使用 React SSR。
-
原理:
- Node 服务: 让前后端运行同一套代码成为可能。
- Virtual Dom: 让前端代码脱离浏览器运行。
条件: Node 中间层、 React / Vue 等框架。 结构大概如下:
<img width="600" src="./images/interview/9.png">
-
开发流程: (此处以 React + Router + Redux + Koa 为例)
-
1、在同个项目中,搭建 前后端部分,常规结构:
- build
- public
- src
- client
- server
2、server 中使用 Koa 路由监听 页面访问:
import * as Router from 'koa-router' const router = new Router() // 如果中间也提供 Api 层 router.use('/api/home', async () => { // 返回数据 }) router.get('*', async (ctx) => { // 返回 HTML })
- 3、通过访问 url 匹配 前端页面路由:
// 前端页面路由 import { pages } from '../../client/app' import { matchPath } from 'react-router-dom' // 使用 react-router 库提供的一个匹配方法 const matchPage = matchPath(ctx.req.url, page)
-
4、通过页面路由的配置进行 数据获取。通常可以在页面路由中增加 SSR 相关的静态配置,用于抽象逻辑,可以保证服务端逻辑的通用性,如:
class HomePage extends React.Component{ public static ssrConfig = { cache: true, fetch() { // 请求获取数据 } } }
获取数据通常有两种情况:
- 中间层也使用 http 获取数据,则此时 fetch 方法可前后端共享;
const data = await matchPage.ssrConfig.fetch()
- 中间层并不使用 http,是通过一些 内部调用,例如 Rpc 或 直接读数据库 等,此时也可以直接由服务端调用对应的方法获取数据。通常,这里需要在 ssrConfig 中配置特异性的信息,用于匹配对应的数据获取方法。
// 页面路由 class HomePage extends React.Component{ public static ssrConfig = { fetch: { url: '/api/home', } } } // 根据规则匹配出对应的数据获取方法 // 这里的规则可以自由,只要能匹配出正确的方法即可 const controller = matchController(ssrConfig.fetch.url) // 获取数据 const data = await controller(ctx)
5、创建 Redux store,并将数据
dispatch
到里面:
import { createStore } from 'redux' // 获取 Clinet层 reducer // 必须复用前端层的逻辑,才能保证一致性; import { reducers } from '../../client/store' // 创建 store const store = createStore(reducers) // 获取配置好的 Action const action = ssrConfig.action // 存储数据 store.dispatch(createAction(action)(data))
- 6、注入 Store, 调用
renderToString
将 React Virtual Dom 渲染成 字符串:
import * as ReactDOMServer from 'react-dom/server' import { Provider } from 'react-redux' // 获取 Clinet 层根组件 import { App } from '../../client/app' const AppString = ReactDOMServer.renderToString( <Provider store={store}> <StaticRouter location={ctx.req.url} context={{}}> <App /> </StaticRouter> </Provider> )
7、将 AppString 包装成完整的 html 文件格式;
8、此时,已经能生成完整的 HTML 文件。但只是个纯静态的页面,没有样式没有交互。接下来我们就是要插入 JS 与 CSS。我们可以通过访问前端打包后生成的
asset-manifest.json
文件来获取相应的文件路径,并同样注入到 Html 中引用。
const html = ` <!DOCTYPE html> <html lang="zh"> <head></head> <link href="${cssPath}" rel="stylesheet" /> <body> <div id="App">${AppString}</div> <script src="${scriptPath}"></script> </body> </html> `
- 9、进行 数据脱水: 为了把服务端获取的数据同步到前端。主要是将数据序列化后,插入到 html 中,返回给前端。
import serialize from 'serialize-javascript' // 获取数据 const initState = store.getState() const html = ` <!DOCTYPE html> <html lang="zh"> <head></head> <body> <div id="App"></div> <script type="application/json" id="SSR_HYDRATED_DATA">${serialize(initState)}</script> </body> </html> ` ctx.status = 200 ctx.body = html
Tips:
这里比较特别的有两点:
使用了
serialize-javascript
序列化 store, 替代了JSON.stringify
,保证数据的安全性,避免代码注入和 XSS 攻击;使用 json 进行传输,可以获得更快的加载速度;
- 10、Client 层 �数据吸水: 初始化 store 时,以脱水后的数据为初始化数据,同步创建 store。
const hydratedEl = document.getElementById('SSR_HYDRATED_DATA') const hydrateData = JSON.parse(hydratedEl.textContent) // 使用初始 state 创建 Redux store const store = createStore(reducer, hydrateData)
-
8. 函数式编程
函数式编程是一种 编程范式,你可以理解为一种软件架构的思维模式。它有着独立一套理论基础与边界法则,追求的是 更简洁、可预测、高复用、易测试。其实在现有的众多知名库中,都蕴含着丰富的函数式编程思想,如 React / Redux 等。
-
常见的编程范式:
- 命令式编程(过程化编程): 更关心解决问题的步骤,一步步以语言的形式告诉计算机做什么;
- 事件驱动编程: 事件订阅与触发,被广泛用于 GUI 的编程设计中;
- 面向对象编程: 基于类、对象与方法的设计模式,拥有三个基础概念: 封装性、继承性、多态性;
- 函数式编程
- 换成一种更高端的说法,面向数学编程。怕不怕~🥴
-
函数式编程的理念:
-
纯函数(确定性函数): 是函数式编程的基础,可以使程序变得灵活,高度可拓展,可维护;
-
优势:
- 完全独立,与外部解耦;
- 高度可复用,在任意上下文,任意时间线上,都可执行并且保证结果稳定;
- 可测试性极强;
-
条件:
- 不修改参数;
- 不依赖、不修改任何函数外部的数据;
- 完全可控,参数一样,返回值一定一样: 例如函数不能包含
new Date()
或者Math.randon()
等这种不可控因素; - 引用透明;
我们常用到的许多 API 或者工具函数,它们都具有着纯函数的特点, 如
split / join / map
;
-
-
函数复合: 将多个函数进行组合后调用,可以实现将一个个函数单元进行组合,达成最后的目标;
-
扁平化嵌套: 首先,我们一定能想到组合函数最简单的操作就是 包裹,因为在 JS 中,函数也可以当做参数:
-
f(g(k(x)))
: 嵌套地狱,可读性低,当函数复杂后,容易让人一脸懵逼; - 理想的做法:
xxx(f, g, k)(x)
-
-
结果传递: 如果想实现上面的方式,那也就是
xxx
函数要实现的便是: 执行结果在各个函数之间的执行传递;- 这时我们就能想到一个原生提供的数组方法:
reduce
,它可以按数组的顺序依次执行,传递执行结果; - 所以我们就能够实现一个方法
pipe
,用于函数组合:
// ...fs: 将函数组合成数组; // Array.prototype.reduce 进行组合; // p: 初始参数; const pipe = (...fs) => p => fs.reduce((v, f) => f(v), p)
- 这时我们就能想到一个原生提供的数组方法:
使用: 实现一个 驼峰命名 转 中划线命名 的功能:
// 'Guo DongDong' --> 'guo-dongdong' // 函数组合式写法 const toLowerCase = str => str.toLowerCase() const join = curry((str, arr) => arr.join(str)) const split = curry((splitOn, str) => str.split(splitOn)); const toSlug = pipe( toLowerCase, split(' '), join('_'), encodeURIComponent, ); console.log(toSlug('Guo DongDong'))
-
好处:
- 隐藏中间参数,不需要临时变量,避免了这个环节的出错几率;
- 只需关注每个纯函数单元的稳定,不再需要关注命名,传递,调用等;
- 可复用性强,任何一个函数单元都可被任意复用和组合;
- 可拓展性强,成本低,例如现在加个需求,要查看每个环节的输出:
const log = curry((label, x) => { console.log(`${ label }: ${ x }`); return x; }); const toSlug = pipe( toLowerCase, log('toLowerCase output'), split(' '), log('split output'), join('_'), log('join output'), encodeURIComponent, );
Tips:
一些工具纯函数可直接引用
lodash/fp
,例如curry/map/split
等,并不需要像我们上面这样自己实现; -
-
数据不可变性(immutable): 这是一种数据理念,也是函数式编程中的核心理念之一:
- 倡导: 一个对象再被创建后便不会再被修改。当需要改变值时,是返回一个全新的对象,而不是直接在原对象上修改;
- 目的: 保证数据的稳定性。避免依赖的数据被未知地修改,导致了自身的执行异常,能有效提高可控性与稳定性;
- 并不等同于
const
。使用const
创建一个对象后,它的属性仍然可以被修改; - 更类似于
Object.freeze
: 冻结对象,但freeze
仍无法保证深层的属性不被串改; -
immutable.js
: js 中的数据不可变库,它保证了数据不可变,在 React 生态中被广泛应用,大大提升了性能与稳定性;-
trie
数据结构:- 一种数据结构,能有效地深度冻结对象,保证其不可变;
- 结构共享: 可以共用不可变对象的内存引用地址,减少内存占用,提高数据操作性能;
-
避免不同函数之间的 状态共享,数据的传递使用复制或全新对象,遵守数据不可变原则;
避免从函数内部 改变外部状态,例如改变了全局作用域或父级作用域上的变量值,可能会导致其它单位错误;
-
避免在单元函数内部执行一些 副作用,应该将这些操作抽离成更独立的工具单元;
- 日志输出
- 读写文件
- 网络请求
- 调用外部进程
- 调用有副作用的函数
-
-
高阶函数: 是指 以函数为参数,返回一个新的增强函数 的一类函数,它通常用于:
- 将逻辑行为进行 隔离抽象,便于快速复用,如处理数据,兼容性等;
- 函数组合,将一系列单元函数列表组合成功能更强大的函数;
- 函数增强,快速地拓展函数功能,
-
函数式编程的好处:
- 函数副作用小,所有函数独立存在,没有任何耦合,复用性极高;
- 不关注执行时间,执行顺序,参数,命名等,能专注于数据的流动与处理,能有效提高稳定性与健壮性;
- 追求单元化,粒度化,使其重构和改造成本降低,可维护、可拓展性较好;
- 更易于做单元测试。
-
总结:
- 函数式编程其实是一种编程思想,它追求更细的粒度,将应用拆分成一组组极小的单元函数,组合调用操作数据流;
- 它提倡着 纯函数 / 函数复合 / 数据不可变, 谨慎对待函数内的 状态共享 / 依赖外部 / 副作用;
Tips:
其实我们很难也不需要在面试过程中去完美地阐述出整套思想,这里也只是浅尝辄止,一些个人理解而已。博主也是初级小菜鸟,停留在表面而已,只求对大家能有所帮助,轻喷🤣;
我个人觉得: 这些编程范式之间,其实并不矛盾,各有各的 优劣势。
理解和学习它们的理念与优势,合理地 设计融合,将优秀的软件编程思想用于提升我们应用;
所有设计思想,最终的目标一定是使我们的应用更加 解耦颗粒化、易拓展、易测试、高复用,开发更为高效和安全;
有一些库能让大家很快地接触和运用函数思想:
Underscore.js
/Lodash/fp
/Rxjs
等。
作者:郭东东
链接:https://juejin.im/post/5c64d15d6fb9a049d37f9c20
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。